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ackermannKinematics
Car-like steering vehicle model

Description
ackermannKinematics creates a car-like vehicle model that uses Ackermann steering. This model
represents a vehicle with two axles separated by the distance, Wheelbase. The state of the vehicle is
defined as a four-element vector, [x y theta psi], with a global xy-position, specified in meters. The xy-
position is located at the middle of the rear axle. The vehicle heading, theta, and steering angle, psi
are specified in radians. The vehicle heading is defined at the center of the rear axle. Angles are
given in radians. To compute the time derivative states for the model, use the derivative function
with input steering commands and the current robot state.

Creation

Syntax
kinematicModel = ackermannKinematics

kinematicModel = ackermannKinematics(Name,Value)

Description

kinematicModel = ackermannKinematics creates an Ackermann kinematic model object with
default property values.

kinematicModel = ackermannKinematics(Name,Value) sets additional properties to the
specified values. You can specify multiple properties in any order.

Properties
WheelBase — Distance between front and rear axles
1 (default) | positive numeric scalar
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The wheel base refers to the distance between the front and rear axles, specified in meters.

VehicleSpeedRange — Range of vehicle wheel speeds
[-Inf Inf] (default) | two-element vector

The vehicle speed range is a two-element vector that provides the minimum and maximum vehicle
speeds, [MinSpeed MaxSpeed], specified in meters per second.

Object Functions
derivative Time derivative of vehicle state

Examples

Simulate Different Kinematic Models for Mobile Robots

This example shows how to model different robot kinematics models in an environment and compare
them.

Define Mobile Robots with Kinematic Constraints

There are a number of ways to model the kinematics of mobile robots. All dictate how the wheel
velocities are related to the robot state: [x y theta], as xy-coordinates and a robot heading,
theta, in radians.

Unicycle Kinematic Model

The simplest way to represent mobile robot vehicle kinematics is with a unicycle model, which has a
wheel speed set by a rotation about a central axle, and can pivot about its z-axis. Both the differential-
drive and bicycle kinematic models reduce down to unicycle kinematics when inputs are provided as
vehicle speed and vehicle heading rate and other constraints are not considered.

unicycle = unicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate");

Differential-Drive Kinematic Model

The differential drive model uses a rear driving axle to control both vehicle speed and head rate. The
wheels on the driving axle can spin in both directions. Since most mobile robots have some interface
to the low-level wheel commands, this model will again use vehicle speed and heading rate as input to
simplify the vehicle control.

diffDrive = differentialDriveKinematics("VehicleInputs","VehicleSpeedHeadingRate");

To differentiate the behavior from the unicycle model, add a wheel speed velocity constraint to the
differential-drive kinematic model

diffDrive.WheelSpeedRange = [-10 10]*2*pi;

Bicycle Kinematic Model

The bicycle model treats the robot as a car-like model with two axles: a rear driving axle, and a front
axle that turns about the z-axis. The bicycle model works under the assumption that wheels on each
axle can be modeled as a single, centered wheel, and that the front wheel heading can be directly set,
like a bicycle.
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bicycle = bicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate","MaxSteeringAngle",pi/8);

Other Models

The Ackermann kinematic model is a modified car-like model that assumes Ackermann steering. In
most car-like vehicles, the front wheels do not turn about the same axis, but instead turn on slightly
different axes to ensure that they ride on concentric circles about the center of the vehicle's turn.
This difference in turning angle is called Ackermann steering, and is typically enforced by a
mechanism in actual vehicles. From a vehicle and wheel kinematics standpoint, it can be enforced by
treating the steering angle as a rate input.

carLike = ackermannKinematics;

Set up Simulation Parameters

These mobile robots will follow a set of waypoints that is designed to show some differences caused
by differing kinematics.

waypoints = [0 0; 0 10; 10 10; 5 10; 11 9; 4 -5];
% Define the total time and the sample rate
sampleTime = 0.05;               % Sample time [s]
tVec = 0:sampleTime:20;          % Time array

initPose = [waypoints(1,:)'; 0]; % Initial pose (x y theta)

Create a Vehicle Controller

The vehicles follow a set of waypoints using a Pure Pursuit controller. Given a set of waypoints, the
robot current state, and some other parameters, the controller outputs vehicle speed and heading
rate.

% Define a controller. Each robot requires its own controller
controller1 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller2 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller3 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);

Simulate the Models Using an ODE Solver

The models are simulated using the derivative function to update the state. This example uses an
ordinary differential equation (ODE) solver to generate a solution. Another way would be to update
the state using a loop, as shown in “Path Following for a Differential Drive Robot”.

Since the ODE solver requires all outputs to be provided as a single output, the pure pursuit
controller must be wrapped in a function that outputs the linear velocity and heading angular velocity
as a single output. An example helper, exampleHelperMobileRobotController, is used for that
purpose. The example helper also ensures that the robot stops when it is within a specified radius of
the goal.

goalPoints = waypoints(end,:)';
goalRadius = 1;

ode45 is called once for each type of model. The derivative function computes the state outputs with
initial state set by initPose. Each derivative accepts the corresponding kinematic model object, the
current robot pose, and the output of the controller at that pose.

% Compute trajectories for each kinematic model under motion control
[tUnicycle,unicyclePose] = ode45(@(t,y)derivative(unicycle,y,exampleHelperMobileRobotController(controller1,y,goalPoints,goalRadius)),tVec,initPose);
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[tBicycle,bicyclePose] = ode45(@(t,y)derivative(bicycle,y,exampleHelperMobileRobotController(controller2,y,goalPoints,goalRadius)),tVec,initPose);
[tDiffDrive,diffDrivePose] = ode45(@(t,y)derivative(diffDrive,y,exampleHelperMobileRobotController(controller3,y,goalPoints,goalRadius)),tVec,initPose);

Plot Results

The results of the ODE solver can be easily viewed on a single plot using plotTransforms to
visualize the results of all trajectories at once.

The pose outputs must first be converted to indexed matrices of translations and quaternions.

unicycleTranslations = [unicyclePose(:,1:2) zeros(length(unicyclePose),1)];
unicycleRot = axang2quat([repmat([0 0 1],length(unicyclePose),1) unicyclePose(:,3)]);

bicycleTranslations = [bicyclePose(:,1:2) zeros(length(bicyclePose),1)];
bicycleRot = axang2quat([repmat([0 0 1],length(bicyclePose),1) bicyclePose(:,3)]);

diffDriveTranslations = [diffDrivePose(:,1:2) zeros(length(diffDrivePose),1)];
diffDriveRot = axang2quat([repmat([0 0 1],length(diffDrivePose),1) diffDrivePose(:,3)]);

Next, the set of all transforms can be plotted and viewed from the top. The paths of the unicycle,
bicycle, and differential-drive robots are red, blue, and green, respectively. To simplify the plot, only
show every tenth output.

figure
plot(waypoints(:,1),waypoints(:,2),"kx-","MarkerSize",20);
hold all
plotTransforms(unicycleTranslations(1:10:end,:),unicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","r");
plotTransforms(bicycleTranslations(1:10:end,:),bicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","b");
plotTransforms(diffDriveTranslations(1:10:end,:),diffDriveRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","g");
view(0,90)
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Simulate Ackermann Kinematic Model with Steering Angle Constraints

Simulate a mobile robot model that uses Ackermann steering with constraints on its steering angle.
During simulation, the model maintains maximum steering angle after it reaches the steering limit. To
see the effect of steering saturation, you compare the trajectory of two robots, one with the
constraints on the steering angle and the other without any steering constraints.

Define the Model

Define the Ackermann kinematic model. In this car-like model, the front wheels are a given distance
apart. To ensure that they turn on concentric circles, the wheels have different steering angles. While
turning, the front wheels receive the steering input as rate of change of steering angle.

carLike = ackermannKinematics; 

Set Up Simulation Parameters

Set the mobile robot to follow a constant linear velocity and receive a constant steering rate as input.
Simulate the constrained robot for a longer period to demonstrate steering saturation.

velo = 5;    % Constant linear velocity 
psidot = 1;  % Constant left steering rate 

% Define the total time and sample rate 
sampleTime = 0.05;                  % Sample time [s]
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timeEnd1 = 1.5;                     % Simulation end time for unconstrained robot 
timeEnd2 = 10;                      % Simulation end time for constrained robot 
tVec1 = 0:sampleTime:timeEnd1;      % Time array for unconstrained robot 
tVec2 = 0:sampleTime:timeEnd2;      % Time array for constrained robot  

initPose = [0;0;0;0];               % Initial pose (x y theta phi) 

Create Options Structure for ODE Solver

In this example, you pass an options structure as argument to the ODE solver. The options
structure contains the information about the steering angle limit. To create the options structure,
use the Events option of odeset and the created event function, detectSteeringSaturation.
detectSteeringSaturation sets the maximum steering angle to 45 degrees.

For a description of how to define detectSteeringSaturation, see Define Event Function at the
end of this example. 

options = odeset('Events',@detectSteeringSaturation);

Simulate Model Using ODE Solver

Next, you use the derivative function and an ODE solver, ode45, to solve the model and generate
the solution.

% Simulate the unconstrained robot 
[t1,pose1] = ode45(@(t,y)derivative(carLike,y,[velo psidot]),tVec1,initPose);

% Simulate the constrained robot 
[t2,pose2,te,ye,ie] = ode45(@(t,y)derivative(carLike,y,[velo psidot]),tVec2,initPose,options);

Detect Steering Saturation

When the model reaches the steering limit, it registers a timestamp of the event. The time it took to
reach the limit is stored in te.

if te < timeEnd2
    str1 = "Steering angle limit was reached at ";
    str2 = " seconds";
    comp = str1 + te + str2; 
    disp(comp)
end 

Steering angle limit was reached at 0.785 seconds

Simulate Constrained Robot with New Initial Conditions

Now use the state of the constrained robot before termination of integration as initial condition for
the second simulation. Modify the input vector to represent steering saturation, that is, set the
steering rate to zero.

saturatedPsiDot = 0;             % Steering rate after saturation 
cmds = [velo saturatedPsiDot];   % Command vector 
tVec3 = te:sampleTime:timeEnd2;  % Time vector 
pose3 = pose2(length(pose2),:); 
[t3,pose3,te3,ye3,ie3] = ode45(@(t,y)derivative(carLike,y,cmds), tVec3,pose3, options);

Plot the Results

Plot the trajectory of the robot using plot and the data stored in pose.
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figure(1)
plot(pose1(:,1),pose1(:,2),'--r','LineWidth',2); 
hold on; 
plot([pose2(:,1); pose3(:,1)],[pose2(:,2);pose3(:,2)],'g'); 
title('Trajectory X-Y')
xlabel('X')
ylabel('Y') 
legend('Unconstrained robot','Constrained Robot','Location','northwest')
axis equal

The unconstrained robot follows a spiral trajectory with decreasing radius of curvature while the
constrained robot follows a circular trajectory with constant radius of curvature after the steering
limit is reached.

Define Event Function

Set the event function such that integration terminates when 4th state, theta, is equal to maximum
steering angle.

function [state,isterminal,direction] = detectSteeringSaturation(t,y)
  maxSteerAngle = 0.785;               % Maximum steering angle (pi/4 radians)
  state(4) = (y(4) - maxSteerAngle);   % Saturation event occurs when the 4th state, theta, is equal to the max steering angle    
  isterminal(4) = 1;                   % Integration is terminated when event occurs 
  direction(4) = 0;                    % Bidirectional termination 
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end

Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
bicycleKinematics | unicycleKinematics | differentialDriveKinematics

Blocks
Ackermann Kinematic Model

Functions
derivative

Topics
“Mobile Robot Kinematics Equations”
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analyticalInverseKinematics
Solve closed-form inverse kinematics

Description
The analyticalInverseKinematics object generates functions that computes all closed-form
solutions for inverse kinematics (IK) for serial-chain manipulators using an approach based on the
Pieper method [1]. The object generates a custom function to find multiple distinct joint
configurations that achieve the desired end-effector pose for a kinematic group of a rigid body tree
robot model given that the specified kinematic group represents an applicable six-DOF serial
manipulator with a wrist and compatible kinematic parameters. A wrist is defined as three
consecutive revolute joints with orthogonal axes.

These are the key elements of the solver:

• Robot model — Rigid body tree model that defines the kinematics of the robot. Specify this model
as a rigidBodyTree object when creating the solver.

• Kinematic group — Base and end-effector body names for a six-DOF serial chain that is part of
the robot model. To set this parameter, use the showdetails function.

• Kinematic group type — Classification of joints connecting base to end effector.

To see all possible supported kinematic groups for your robot, use the showdetails object function.
To set a specific group from the list, click the Use this kinematic group link for a kinematic group
in the returned list.

To calculate inverse kinematics for a specific kinematic group, use the generateIKFunction object
function. To ensure your robot model and kinematic group are compatible, check the
IsValidGroupForIK property after selecting a kinematic group.

To generate numeric solutions, use the inverseKinematics and
generalizedInverseKinematics objects.

Creation

Syntax
analyticalIK = analyticalInverseKinematics(robotRBT)
analyticalIK = analyticalInverseKinematics(
robotRBT,'KinematicGroup',kinGroup)

Description

analyticalIK = analyticalInverseKinematics(robotRBT) creates an analytical inverse
kinematics solver for a rigid body tree robot model, specified as a rigidBodyTree object. The end
effector is the final body listed in the Bodies property of the robot model. The robotRBT argument
sets the RigidBodyTree property.
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analyticalIK = analyticalInverseKinematics(
robotRBT,'KinematicGroup',kinGroup) sets the KinematicGroup property to the kinGroup
argument, specified as a structure.

Properties
RigidBodyTree — Rigid body tree robot model
rigidBodyTree object

Rigid body tree robot model, specified as a rigidBodyTree object. To use a provided robot model,
see loadrobot. To import Unified Robot Description Format (URDF) models, see the importrobot
function.

KinematicGroup — Base and end-effector body names
structure

Base and end-effector body names, specified as a structure. The structure contains these fields:

• BaseName — Name of the body in the robot model stored in the RigidBodyTree property that
represents the base of the kinematic group. The default value is the base of the RigidBodyTree
property.

• EndEffectorBodyName — Name of the body in the robot model stored in the RigidBodyTree
property that represents the end of the kinematic group. The default value is the last body in the
Bodies property of the robot model.

A valid kinematic group must represent a six-DOF serial chain with a wrist and a contain joint types
defined by KinematicGroupType as 'XXXSSS'. A wrist is defined as three consecutive revolute
joints with orthogonal axes with compatible kinematic parameters and is represented as SSS. XXX is
either three revolute joints RRR or another wrist SSS. If the kinematic group type contains a prismatic
joint, P, the kinematic group is invalid for use with this solver. To check if your kinematic group is
valid for this solver, see the IsValidGroupForIK property.

When created, the object automatically selects a kinematic group from the robot model, but other
options may be available. To see valid kinematic groups for your model, use the showdetails object
function.
Example: struct("BaseName","base","EndEffectoryBodyName","tool0")
Data Types: struct

KinematicGroupType — Classification of the kinematic group
character vector

This property is read-only.

Classification of the kinematic group, stored as a character vector. Each character specifies the joint
type of each rigid body from the base to the end effector of the kinematic group. These are the
options for the characters:

• R — Revolute joint that does not form a wrist
• P — Prismatic joint
• S — Revolute joint of a wrist
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Note A wrist or spherical joint is comprised of three consecutive revolute joints with orthogonal
axes.

To qualify as a valid kinematic group for the analyticalInverseKinematics object, the kinematic
group type must be 'XXXSSS', where XXX can be either RRR or SSS. If the kinematic group type
contains a prismatic joint, P, the kinematic group is invalid for use with this solver. To check if your
kinematic group is valid for this solver, see the IsValidGroupForIK property.

When created, the object automatically selects a kinematic group from the robot model, but other
options may be available. To see valid kinematic groups for your model, use the showdetails object
function.
Example: 'RRRSSS'
Data Types: char

KinematicGroupConfigIdx — Mapping of IK solution configuration to rigid body tree
configuration
six-element vector

This property is read-only.

Mapping of IK solution configuration to rigid body tree configuration, specified as a six-element
vector. This mapping converts the indices of the IK solution that is output from the
generateIKFunction function to the indices for the robot model stored in the RigidBodyTree
property.
Example: [1 2 3 4 5 6]
Data Types: double

IsValidGroupForIK — Indication of whether closed-form solution is possible
1 (true) | 0 (false)

This property is read-only.

Indication of whether a closed-form solution is possible, stored as a logical, 1 (true or 0 (false).
When this property is false, the generateIKFunction function cannot generate an IK solver for
the current kinematic group. Use the showdetails object function to check if any valid groups exist.
To select a valid group, specify a different base or end effector to the KinematicGroup property, or
change kinematic parameters of your robot model stored in the RigidBodyTree property.

To qualify as a valid kinematic group for the analyticalInverseKinematics object, the kinematic
group type must be 'XXXSSS', where XXX can be either RRR or SSS. If the kinematic group type
contains a prismatic joint, P, the kinematic group is invalid for use with this solver. To check if your
kinematic group is valid for this solver, see the IsValidGroupForIK property.
Data Types: logical

Object Functions
generateIKFunction Generate function for closed-form inverse kinematics
showdetails Display overview of available kinematic groups

Examples
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Solve Analytical Inverse Kinematics for Robot Manipulator

Generate closed-form inverse kinematics (IK) solutions for a desired end effector. Load the provided
robot model and inspect details about the feasible kinematic groups of base and end-effector bodies.
Generate a function for your desired kinematic group. Inspect the various configurations for a
specific end-effector pose.

Robot Model

Load the ABB IRB 120 robot model into the workspace. Display the model.

robot = loadrobot('abbIrb120','DataFormat','row');
show(robot);

Analytical IK

Create the analytical IK solver. Show details for the robot model, which lists the different kinematic
groups available for closed-form analytical IK solutions. Select the second kinematic group by
clicking the Use this kinematic group link in the second row of the table.

aik = analyticalInverseKinematics(robot);
showdetails(aik)

--------------------
Robot: (8 bodies)

Index      Base Name   EE Body Name     Type                    Actions

 analyticalInverseKinematics

1-13



-----      ---------   ------------     ----                    -------
    1      base_link         link_6   RRRSSS   Use this kinematic group
    2      base_link          tool0   RRRSSS   Use this kinematic group

Inspect the kinematic group, which lists the base and end-effector body names. For this robot, the
group uses the 'base_link' and 'tool0' bodies, respectively.

aik.KinematicGroup

ans = struct with fields:
               BaseName: 'base_link'
    EndEffectorBodyName: 'tool0'

Generate Function

Generate the IK function for the selected kinematic group. Specify a name for the function, which is
generated and saved in the current directory.

generateIKFunction(aik,'robotIK');

Specify a desired end-effector position. Convert the xyz-position to a homogeneous transformation.

eePosition = [0 0.5 0.5];
eePose = trvec2tform(eePosition);
hold on
plotTransforms(eePosition,tform2quat(eePose))
hold off
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Generate Configuration for IK Solution

Specify the homogeneous transformation to the generated IK function, which generates all solutions
for the desired end-effector pose. Display the first generated configuration to verify that the desired
pose has been achieved.

ikConfig = robotIK(eePose); % Uses the generated file

show(robot,ikConfig(1,:));
hold on
plotTransforms(eePosition,tform2quat(eePose))
hold off

Display all of the closed-form IK solutions sequentially.

figure;
numSolutions = size(ikConfig,1);

for i = 1:size(ikConfig,1)
    subplot(1,numSolutions,i)
    show(robot,ikConfig(i,:));
end
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Solve Analytical IK for Large-DOF Robot

Some manipulator robot models have large degrees-of-freedom (DOFs). To reach certain end-effector
poses, however, only six DOFs are required. Use the analyticalInverseKinematics object, which
supports six-DOF robots, to determine various valid kinematic groups for this large-DOF robot model.
Use the showdetails object function to get information about the model.

Load Robot Model and Generate IK Solver

Load the robot model into the workspace, and create an analyicalInverseKinematics object.
Use the showdetails object function to see the supported kinematic groups.

robot = loadrobot('willowgaragePR2','DataFormat','row');
aik = analyticalInverseKinematics(robot);
opts = showdetails(aik);

--------------------
Robot: (94 bodies)

Index                                          Base Name                                       EE Body Name     Type                    Actions
-----                                          ---------                                       ------------     ----                    -------
    1                                l_shoulder_pan_link                                  l_wrist_roll_link   RSSSSS   Use this kinematic group
    2                                r_shoulder_pan_link                                  r_wrist_roll_link   RSSSSS   Use this kinematic group
    3                                l_shoulder_pan_link                                l_gripper_palm_link   RSSSSS   Use this kinematic group
    4                                r_shoulder_pan_link                                r_gripper_palm_link   RSSSSS   Use this kinematic group
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    5                                l_shoulder_pan_link                                l_gripper_led_frame   RSSSSS   Use this kinematic group
    6                                l_shoulder_pan_link                 l_gripper_motor_accelerometer_link   RSSSSS   Use this kinematic group
    7                                l_shoulder_pan_link                               l_gripper_tool_frame   RSSSSS   Use this kinematic group
    8                                r_shoulder_pan_link                                r_gripper_led_frame   RSSSSS   Use this kinematic group
    9                                r_shoulder_pan_link                 r_gripper_motor_accelerometer_link   RSSSSS   Use this kinematic group
   10                                r_shoulder_pan_link                               r_gripper_tool_frame   RSSSSS   Use this kinematic group

Select a group programmically using the output of the showdetails object function, opts. The
selected group uses the left shoulder as the base with the left wrist as the end effector.

aik.KinematicGroup = opts(1).KinematicGroup;
disp(aik.KinematicGroup)

               BaseName: 'l_shoulder_pan_link'
    EndEffectorBodyName: 'l_wrist_roll_link'

Generate the IK function for the selected group.

generateIKFunction(aik,'willowRobotIK');

Solve Analytical IK

Define a target end-effector pose using a randomly-generated configuration.

rng(0);
expConfig = randomConfiguration(robot);

eeBodyName = aik.KinematicGroup.EndEffectorBodyName;
baseName = aik.KinematicGroup.BaseName;
expEEPose = getTransform(robot,expConfig,eeBodyName,baseName);

Solve for all robot configurations that achieve the defined end-effector pose using the generated IK
function. To ignore joint limits, specify false as the second input argument.

ikConfig = willowRobotIK(expEEPose,false);

To display the target end-effector pose in the world frame, get the transformation from the base of
the robot model, rather than the base of the kinematic group. Display all of the generated IK
solutions by specifying the indices for your kinematic group IK solution in the configuration vector
used with the show function.

eeWorldPose = getTransform(robot,expConfig,eeBodyName);

generatedConfig = repmat(expConfig, size(ikConfig,1), 1);
generatedConfig(:,aik.KinematicGroupConfigIdx) = ikConfig;

for i = 1:size(ikConfig,1)
    figure;
    ax = show(robot,generatedConfig(i,:));
    hold all;
    plotTransforms(tform2trvec(eeWorldPose),tform2quat(eeWorldPose),'Parent',ax);
    title(['Solution ' num2str(i)]);
end
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Version History
Introduced in R2020b

References
[1] Pieper, Donald. The Kinematics of Manipulators Under Computer Control. Stanford University,

1968.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The analyticalInverseKinematics object only supports code generation for the function created
by calling the generateIKFunction. Use the analyticalInverseKinematics object to modify
parameters and setup the solver. Then, use generateIKFunction to create your custom IK function
for your robot model. Call codegen on the output ikFunction that is generated.

See Also
Objects
inverseKinematics | generalizedInverseKinematics | rigidBodyTree
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Functions
loadrobot | importrobot | generateIKFunction | showdetails
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bicycleKinematics
Bicycle vehicle model

Description
bicycleKinematics creates a bicycle vehicle model to simulate simplified car-like vehicle
dynamics. This model represents a vehicle with two axles separated by a distance, WheelBase. The
state of the vehicle is defined as a three-element vector, [x y theta], with a global xy-position,
specified in meters, and a vehicle heading angle, theta, specified in radians. The front wheel can be
turned with steering angle psi. The vehicle heading, theta, is defined at the center of the rear axle. To
compute the time derivative states of the model, use the derivative function with input commands
and the current robot state.

Creation

Syntax
kinematicModel = bicycleKinematics

kinematicModel = bicycleKinematics(Name,Value)

Description

kinematicModel = bicycleKinematics creates a bicycle kinematic model object with default
property values.

kinematicModel = bicycleKinematics(Name,Value) sets additional properties to the
specified values. You can specify multiple properties in any order.

Properties
WheelBase — Distance between front and rear axles
1 (default) | positive numeric scalar

The wheel base refers to the distance between the front and rear vehicle axles, specified in meters.

VehicleSpeedRange — Range of vehicle speeds
[-Inf Inf] (default) | positive numeric scalar
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The vehicle speed range is a two-element vector that provides the minimum and maximum vehicle
speeds, [MinSpeed MaxSpeed], specified in meters per second.

MaxSteeringAngle — Maximum steering angle
pi/4 (default) | numeric scalar

The maximum steering angle, psi, refers to the maximum angle the vehicle can be steered to the right
or left, specified in radians. A value of pi/2 provides the vehicle with a minimum turning radius of 0.
This property is used to validate the user-provided state input.

MinimumTurningRadius — Minimum vehicle turning radius
1.0000 (default) | numeric scalar

This property is read-only.

The minimum vehicle turning radius, specified as a numeric scalar, in meters. The minimum radius is
computed using the wheel base and the maximum steering angle.

VehicleInputs — Type of motion inputs for vehicle
"VehicleSpeedSteeringAngle" (default) | character vector | string scalar

The VehicleInputs property specifies the format of the model input commands when using the
derivative function. The property has two valid options, specified as a string or character vector:

• "VehicleSpeedSteeringAngle" — Vehicle speed and steering angle
• "VehicleSpeedHeadingRate" — Vehicle speed and heading angular velocity

Object Functions
derivative Time derivative of vehicle state

Examples

Plot Path of Bicycle Kinematic Robot

Create a Robot

Define a robot and set the initial starting position and orientation.

kinematicModel = bicycleKinematics;
initialState = [0 0 0];

Simulate Robot Motion

Set the timespan of the simulation to 1 s with 0.05 s timesteps and the input commands to 2 m/s and
left turn. Simulate the motion of the robot by using the ode45 solver on the derivative function.

tspan = 0:0.05:1;
inputs = [2 pi/4]; %Turn left
[t,y] = ode45(@(t,y)derivative(kinematicModel,y,inputs),tspan,initialState);

Plot path

figure
plot(y(:,1),y(:,2))
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Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

[2] Corke, Peter I. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
ackermannKinematics | unicycleKinematics | differentialDriveKinematics

Blocks
Bicycle Kinematic Model
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Functions
derivative

Topics
“Simulate Different Kinematic Models for Mobile Robots”
“Mobile Robot Kinematics Equations”
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binaryOccupancyMap
Create occupancy grid with binary values

Description
The binaryOccupancyMap creates a 2-D occupancy map object, which you can use to represent and
visualize a robot workspace, including obstacles. The integration of sensor data and position
estimates create a spatial representation of the approximate locations of the obstacles.

Occupancy grids are used in robotics algorithms such as path planning. They are also used in
mapping applications, such as for finding collision-free paths, performing collision avoidance, and
calculating localization. You can modify your occupancy grid to fit your specific application.

Each cell in the occupancy grid has a value representing the occupancy status of that cell. An
occupied location is represented as true (1) and a free location is represented as false (0).

The object keeps track of three reference frames: world, local, and, grid. The world frame origin is
defined by GridLocationInWorld, which defines the bottom-left corner of the map relative to the
world frame. The LocalOriginInWorld property specifies the location of the origin of the local
frame relative to the world frame. The first grid location with index (1,1) begins in the top-left
corner of the grid.

Note This object was previously named robotics.BinaryOccupancyGrid.

Creation

Syntax
map = binaryOccupancyMap
map = binaryOccupancyMap(width,height)
map = binaryOccupancyMap(width,height,resolution)

map = binaryOccupancyMap(rows,cols,resolution,"grid")

map = binaryOccupancyMap(p)
map = binaryOccupancyMap(p,resolution)

map = binaryOccupancyMap(sourcemap)
map = binaryOccupancyMap(sourcemap,resolution)

Description

map = binaryOccupancyMap creates a 2-D binary occupancy grid with a width and height of 10m.
The default grid resolution is one cell per meter.

map = binaryOccupancyMap(width,height) creates a 2-D binary occupancy grid representing a
work space of width and height in meters. The default grid resolution is one cell per meter.
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map = binaryOccupancyMap(width,height,resolution) creates a grid with the Resolution
property specified in cells per meter. The map is in world coordinates by default.

map = binaryOccupancyMap(rows,cols,resolution,"grid") creates a 2-D binary occupancy
grid of size (rows,cols).

map = binaryOccupancyMap(p) creates a grid from the values in matrix p. The size of the grid
matches the size of the matrix, with each cell value interpreted from its location in the matrix. p
contains any numeric or logical type with zeros (0) and ones (1).

map = binaryOccupancyMap(p,resolution) creates a map from a matrix with the Resolution
property specified in cells per meter.

map = binaryOccupancyMap(sourcemap) creates an object using values from another
binaryOccupancyMap object.

map = binaryOccupancyMap(sourcemap,resolution) creates an object using values from
another binaryOccupancyMap object, but resamples the matrix to have the specified resolution.

Input Arguments

width — Map width
positive scalar

Map width, specified as a positive scalar in meters.

height — Map height
positive scalar

Map height, specified as a positive scalar in meters.

p — Map grid values
matrix

Map grid values, specified as a matrix.

sourcemap — Occupancy map object
binaryOccupancyMap object

Occupancy map object, specified as a binaryOccupancyMap object.

Properties
GridSize — Number of rows and columns in grid
two-element vector of form [rows cols]

This property is read-only.

Number of rows and columns in grid, stored as a two-element vector of the form [rows cols].

Resolution — Grid resolution
1 (default) | scalar

This property is read-only.
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Grid resolution, stored as a scalar in cells per meter.

XLocalLimits — Minimum and maximum values of x-coordinates in local frame
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of x-coordinates in local frame, stored as a two-element vector of the
form [min max]. Local frame is defined by LocalOriginInWorld property.

YLocalLimits — Minimum and maximum values of y-coordinates in local frame
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of y-coordinates in local frame, stored as a two-element vector of the
form [min max]. Local frame is defined by LocalOriginInWorld property.

XWorldLimits — Minimum and maximum values of x-coordinates in world frame
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of x-coordinates in world frame, stored as a two-element vector of the
form [min max]. These values indicate the world range of the x-coordinates in the grid.

YWorldLimits — Minimum and maximum values of y-coordinates
two-element vector of form [min max]

This property is read-only.

Minimum and maximum values of y-coordinates, stored as a two-element vector of the form [min
max]. These values indicate the world range of the y-coordinates in the grid.

GridLocationInWorld — Location of the grid in world coordinates
[0 0] (default) | two-element vector | [xGrid yGrid]

Location of the bottom-left corner of the grid in world coordinates, specified as a two-element vector,
[xGrid yGrid].

LocalOriginInWorld — Location of the local frame in world coordinates
[0 0] (default) | two-element vector | [xWorld yWorld]

Location of the origin of the local frame in world coordinates, specified as a two-element vector,
[xLocal yLocal]. Use the move function to shift the local frame as your vehicle moves.

GridOriginInLocal — Location of the grid in local coordinates
[0 0] (default) | two-element vector | [xLocal yLocal]

Location of the bottom-left corner of the grid in local coordinates, specified as a two-element vector,
[xLocal yLocal].

DefaultValue — Default value for unspecified map locations
0 (default) | 1

Default value for unspecified map locations including areas outside the map, specified as 0 or 1.
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Object Functions
checkOccupancy Check if locations are free or occupied
getOccupancy Get occupancy value of locations
grid2local Convert grid indices to local coordinates
grid2world Convert grid indices to world coordinates
inflate Inflate each occupied location
insertRay Insert ray from laser scan observation
local2grid Convert local coordinates to grid indices
local2world Convert local coordinates to world coordinates
move Move map in world frame
occupancyMatrix Convert occupancy grid to matrix
raycast Compute cell indices along a ray
rayIntersection Find intersection points of rays and occupied map cells
setOccupancy Set occupancy value of locations
show Display binary occupancy map
syncWith Sync map with overlapping map
world2grid Convert world coordinates to grid indices
world2local Convert world coordinates to local coordinates

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Image to Binary Occupancy Grid Example

This example shows how to convert an image to a binary occupancy grid for using with mapping and
path planning.

Import image.

image = imread('imageMap.png');

Convert to grayscale and then black and white image based on given threshold value.

grayimage = rgb2gray(image);
bwimage = grayimage < 0.5;

Use black and white image as matrix input for binary occupancy grid.

grid = binaryOccupancyMap(bwimage);

show(grid)
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Convert PGM Image to Map

This example shows how to convert a .pgm file into a binaryOccupancyMap object for use in
MATLAB.

Import image using imread. The image is quite large and should be cropped to the relevant area.

image = imread('playpen_map.pgm');
imageCropped = image(750:1250,750:1250);
imshow(imageCropped)
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Unknown areas (gray) should be removed and treated as free space. Create a logical matrix based on
a threshold. Depending on your image, this value could be different. Occupied space should be set as
1 (white in image).

imageBW = imageCropped < 100;
imshow(imageBW)
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Create binaryOccupancyMap object using adjusted map image.

map = binaryOccupancyMap(imageBW);
show(map)
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Version History
Introduced in R2015a

binaryOccupancyMap was renamed
Behavior change in future release

The binaryOccupancyMap object was renamed from robotics.BinaryOccupancyGrid. Use
binaryOccupancyMap for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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As of MATLAB® R2022a, default map behavior during code generation has changed, which may result
in backwards compatibility issues. Maps such as binaryOccupancyMap now support fixed-size code
generation (DynamicMemoryAllocation="off").

1 Maps that are either default-constructed or constructed with compile-time constant size
information (or matrices that are of compile-time constant size) produce fixed-size maps.

2 To restore the previous behavior, use the coder.ignoreConst function when specifying size
inputs, or coder.varsize matrix variable name specified as a string scalar or character vector,
prior to constructing the map.

See Also
mobileRobotPRM | controllerPurePursuit

Topics
“Occupancy Grids”
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capsuleApproximation
Approximate collision geometries of rigid body tree with capsules

Description
The capsuleApproximation object approximates the collision geometries associated with every
body of a rigidBodyTree object by fitting collision capsules on each rigid body. This object enables
you to query, modify, and visualize the collision capsules associated with rigid bodies of a rigid body
tree.

Creation

Syntax
capapprox = capsuleApproximation(robot)

Description

capapprox = capsuleApproximation(robot) creates a capsule approximation capapprox of
the input rigid body tree robot.

Input Arguments

robot — Rigid body tree robot model to approximate
rigidBodyTree object

Rigid body tree robot model to approximate with capsules, specified as a rigidBodyTree object. To
use a provided robot model, see loadrobot. To import Unified Robot Description Format (URDF)
models, see the importrobot function.

Properties
RigidBodyTree — Capsule-approximated rigid body tree robot model
rigidBodyTree object

Capsule-approximated rigid body tree robot model, stored as a rigidBodyTree object.

Object Functions
addCapsule Add collision capsule to rigid body
removeCapsule Remove collision capsule from rigid body
getCapsules Get collision capsules of rigid body
show Visualize capsule approximation of rigid body tree
updateGeometry Update geometry of collision capsule of rigid body
updatePose Update pose of collision capsule of rigid body
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Examples

Create Capsule Approximation of Robot Model

Load a robot into the workspace and visualize it.

robot = loadrobot("universalUR16e");
show(robot);

Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsUR16 = capsuleApproximation(robot);
show(capsUR16,homeConfiguration(robot));

1 Classes

1-44



Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);
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Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

1 Classes

1-46



Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
rigidBodyTree | collisionCapsule

Functions
fitCollisionCapsule | checkCollision | genspheres
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collisionBox
Create box collision geometry

Description
Use collisionBox to create a box collision geometry centered at the origin.

Creation

Syntax
BOX = collisionBox(X,Y,Z)

Description

BOX = collisionBox(X,Y,Z) creates an axis-aligned box collision geometry centered at the origin
with X, Y, and Z as its side lengths along the corresponding axes in the geometry-fixed frame. By
default, the geometry-fixed frame collocates with the world frame.

Properties
X — Side length of box geometry
positive scalar

Side length of box geometry along the x-axis, specified as a positive scalar. Units are in meters.
Data Types: double

Y — Side length of box geometry
positive scalar

Side length of box geometry along the y-axis, specified as a positive scalar. Units are in meters.
Data Types: double

Z — Side length of box geometry
positive scalar

Side length of box geometry along the z-axis, specified as a positive scalar. Units are in meters.
Data Types: double

Pose — Pose
eye(4) (default) | real-valued matrix

Pose of the collision geometry relative to the world frame, specified as a 4-by-4 homogeneous matrix.
You can change the pose after you create the collision geometry.
Data Types: double
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Object Functions
show Show collision geometry
convertToCollisionMesh Convert collision primitive geometry into collision mesh geometry
fitCollisionCapsule Fit collision capsule around collision geometry

Examples

Create and Visualize Box Collision Geometry

Create a box collision geometry centered at the origin. The side lengths in the x-, y-, and z-directions
are 3, 1, and 2 meters, respectively.

box = collisionBox(3,1,2)

box = 
  collisionBox with properties:

       X: 3
       Y: 1
       Z: 2
    Pose: [4x4 double]

Visualize the box.

show(box)
title('Box')
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Create two homogeneous transformation matrices. The first matrix is a rotation about the z-axis by
π/2 radians, and the second matrix is a rotation about the x-axis of π/8 radians.

matZ = axang2tform([0 0 1 pi/2]);
matX = axang2tform([1 0 0 pi/8]);

Create a second box collision geometry with the same dimensions as the first. Change its pose to the
product of the two matrices. The product corresponds to first rotation about the z-axis followed by
rotation about the x-axis. Visualize the result.

box2 = collisionBox(3,1,2);
box2.Pose = matZ*matX;
show(box2)
title('Box2')
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
collisionCylinder | collisionMesh | collisionSphere | collisionCapsule

Functions
checkCollision | fitCollisionCapsule

Topics
“Generate Code for Manipulator Motion Planning in Perceived Environment”
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collisionCapsule
Capsule primitive collision geometry

Description
The collisionCapsule object is a capsule primitive collision geometry defined by a radius and
length. The central line segment of the capsule aligns with its z-axis. The origin of the body-fixed
frame is at the midpoint of the central line segment of the capsule.

Creation

Syntax
CAPS = collisionCapsule(radius,length)

Description

CAPS = collisionCapsule(radius,length) creates a capsule primitive with the specified
radius radius and length length. The radius and length arguments set the Radius and Length
properties, respectively

Properties
Radius — Radius of spherical ends of capsule
nonnegative scalar

Radius of the spherical ends of the capsule, specified as a nonnegative scalar. Units are in meters.
Example: 2.5

Length — Length of central line segment of capsule
nonnegative scalar

Length of the central line segment of the capsule, specified as a nonnegative scalar. Units are in
meters.

Note This is not the length from end-to-end of the capsule. The total length of the capsule is Length
+2(Radius).

Example: 4.5

Pose — Pose of capsule
eye(4) (default) | 4-by-4 matrix

Pose of the capsule relative to the world frame, specified as a 4-by-4 homogeneous transformation
matrix. Units are in meters.
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Example: trvec2tform([4 2 5])

Object Functions
checkCollision Check if two geometries are in collision
convertToCollisionMesh Convert collision primitive geometry into collision mesh geometry
genspheres Generate spheres along central line segment of capsule
show Show collision geometry

Examples

Generate Collision Spheres Inside Collision Capsule

Create a collision capsule with a radius of 2 and length of 10. Visualize the capsule.

cCapsule = collisionCapsule(2,10);
[~,p] = show(cCapsule);

Generate spheres at ratios 0.0, 0.5, and 1.0 of the capsule length.

spheres = genspheres(cCapsule,linspace(0,1,3));

Display the positions of the spheres.

for i = 1:length(spheres)
    disp(tform2trvec(spheres{i}.Pose))
end

     0     0    -5

     0     0     0

     0     0     5

Set the face and edge alphas of the capsule to low values. This ensures that both the spheres are
visible when you add them to the figure.

p.FaceAlpha = 0.4;
p.EdgeAlpha = 0.01;
hold on

Display the generated spheres on the capsule.

cellfun(@show,spheres);
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Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
capsuleApproximation | collisionBox | collisionCylinder | collisionSphere |
collisionMesh

Functions
checkCollision | fitCollisionCapsule
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collisionCylinder
Create collision cylinder geometry

Description
Use collisionCylinder to create a cylinder collision geometry centered at the origin.

Creation

Syntax
CYL = collisionCylinder(Radius,Length)

Description

CYL = collisionCylinder(Radius,Length) creates a cylinder collision geometry with a
specified Radius and Length. The cylinder is axis-aligned with its own body-fixed frame. The side of
the cylinder lies along the z-axis. The origin of the body-fixed frame is at the center of the cylinder.

Properties
Radius — Radius
positive scalar

Radius of cylinder, specified as a positive scalar. Units are in meters.
Data Types: double

Length — Length
positive scalar

Length of cylinder, specified as a positive scalar. Units are in meters.
Data Types: double

Pose — Pose
eye(4) (default) | real-valued matrix

Pose of the collision geometry relative to the world frame, specified as a 4-by-4 homogeneous matrix.
You can change the pose after you create the collision geometry.
Data Types: double

Object Functions
show Show collision geometry
convertToCollisionMesh Convert collision primitive geometry into collision mesh geometry
fitCollisionCapsule Fit collision capsule around collision geometry
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Examples

Create and Visualize Cylinder Collision Geometry

Create a cylinder collision geometry centered at the origin. The cylinder is 4 meters long with a
radius of 1 meter.

rad = 1;
len = 4;
cyl = collisionCylinder(rad,len)

cyl = 
  collisionCylinder with properties:

    Radius: 1
    Length: 4
      Pose: [4x4 double]

Visualize the cylinder.

show(cyl)
title('Cylinder')

Create a homogeneous transformation that corresponds to a clockwise rotation of π/4 radians about
the y-axis. Set the cylinder pose to the new matrix. Show the cylinder.
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ang = pi/4;
mat = axang2tform([0 1 0 ang]);
cyl.Pose = mat;
show(cyl)

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
collisionBox | collisionMesh | collisionSphere | collisionCapsule

Functions
checkCollision | fitCollisionCapsule
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Topics
“Generate Code for Manipulator Motion Planning in Perceived Environment”

1 Classes
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collisionMesh
Create convex mesh collision geometry

Description
Use collisionMesh to create a collision geometry as a convex mesh.

Creation

Syntax
MSH = collisionMesh(Vertices)

Description

MSH = collisionMesh(Vertices) creates a convex mesh collision geometry from the list of 3-D
Vertices. The vertices are specified relative to a frame of choice (collision geometry frame). By
default, the collision geometry frame collocates with the world frame.

Properties
Vertices — Vertices
3-D real-valued array

Vertices of a mesh, specified as an N-by-3 array, where N is the number of vertices. Each row of
Vertices represents the coordinates of a point in 3-D space. Note that some of the points can be
inside the constructed convex mesh.
Data Types: double

Pose — Pose
eye(4) (default) | real-valued matrix

Pose of the collision geometry relative to the world frame, specified as a 4-by-4 homogeneous matrix.
You can change the pose after you create the collision geometry.
Data Types: double

Object Functions
show Show collision geometry
fitCollisionCapsule Fit collision capsule around collision geometry

Examples
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Create and Visualize Mesh Collision Geometry

Create an array consisting of the coordinates of ten points randomly chosen on the unit sphere. For
reproducibility, set the random seed to the default value.

rng default
n = 10;
pts = zeros(n,3);
for k = 1:n
    ph = 2*pi*rand(1);
    th = pi*rand(1);
    pts(k,:) = [cos(th)*sin(ph) sin(th)*sin(ph) cos(ph)];
end

Create a convex mesh collision geometry from the array. Visualize the collision geometry.

m = collisionMesh(pts);
show(m)

Create a second array similar to the first, but this time consisting of 1000 points randomly chosen on
the unit sphere.

n = 1000;
pts2 = zeros(n,3);
for k = 1:n
    ph = 2*pi*rand(1);
    th = pi*rand(1);
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    pts2(k,:) = [cos(th)*sin(ph) sin(th)*sin(ph) cos(ph)];
end

Create and visualize a mesh collision geometry from the array. Observe that choosing more points on
the sphere results in a sphere-like mesh.

m2 = collisionMesh(pts2);
show(m2)

Create an array consisting of the coordinates of the eight corners of a cube. The cube is centered at
the origin and has side length 4.

cubeCorners = [-2 -2 -2 ; -2 2 -2 ; 2 -2 -2 ; 2 2 -2 ;...
    -2 -2 2 ; -2 2 2 ; 2 -2 2 ; 2 2 2]

cubeCorners = 8×3

    -2    -2    -2
    -2     2    -2
     2    -2    -2
     2     2    -2
    -2    -2     2
    -2     2     2
     2    -2     2
     2     2     2
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Append cubeCorners to pts2. Create and visualize the mesh collision geometry from the new array.
Because the cube contains the sphere, the sphere points that are interior to the cube are disregarded
when creating the geometry.

pts3 = [pts2;cubeCorners];
m3 = collisionMesh(pts3);
show(m3)

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
collisionBox | collisionCylinder | collisionSphere | collisionCapsule

Functions
checkCollision | fitCollisionCapsule
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Topics
“Generate Code for Manipulator Motion Planning in Perceived Environment”
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collisionSphere
Create sphere collision geometry

Description
Use collisionSphere to create a sphere collision geometry centered at the origin.

Creation

Syntax
sph = collisionSphere(Radius)

Description

sph = collisionSphere(Radius) creates a sphere collision geometry with a specified Radius.
The origin of the geometry-fixed frame is at the center of the sphere.

Properties
Radius — Radius
positive scalar

Radius of sphere, specified as a positive scalar. Units are in meters.
Data Types: double

Pose — Pose
eye(4) (default) | real-valued matrix

Pose of the collision geometry relative to the world frame, specified as a 4-by-4 homogeneous matrix.
You can change the pose after you create the collision geometry.
Data Types: double

Object Functions
show Show collision geometry
convertToCollisionMesh Convert collision primitive geometry into collision mesh geometry
fitCollisionCapsule Fit collision capsule around collision geometry

Examples

Create and Visualize Sphere Collision Geometry

Create a sphere collision geometry centered at the origin. The sphere has a radius of 1 meter.

1 Classes

1-66



rad = 1;
sph = collisionSphere(rad)

sph = 
  collisionSphere with properties:

    Radius: 1
      Pose: [4x4 double]

Visualize the sphere.

show(sph)
title('Sphere')

Create a cylinder collision geometry of radius 1 meter and length 3 meters.

cyl = collisionCylinder(1,3);

Create a homogeneous transformation that corresponds to a translation of 2.5 meters up the z-axis.
Set the pose of the sphere to the matrix. Show the sphere and the cylinder.

mat = trvec2tform([0 0 2.5]);
sph.Pose = mat;
show(sph)
hold on
show(cyl)
view(90,0)
zlim([-2 4])
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Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
collisionBox | collisionCylinder | collisionMesh | collisionCapsule

Functions
checkCollision | fitCollisionCapsule

Topics
“Generate Code for Manipulator Motion Planning in Perceived Environment”
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constraintAiming
Create aiming constraint for pointing at a target location

Description
The constraintAiming object describes a constraint that requires the z-axis of one body (the end
effector) to aim at a target point on another body (the reference body). This constraint is satisfied if
the z-axis of the end-effector frame is within an angular tolerance in any direction of the line
connecting the end-effector origin and the target point. The position of the target point is defined
relative to the reference body.

Constraint objects are used in generalizedInverseKinematics objects to specify multiple
kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory With Multiple
Kinematic Constraints”.

Creation

Syntax
aimConst = constraintAiming(endeffector)
aimConst = constraintAiming(endeffector,Name=Value)

Description

aimConst = constraintAiming(endeffector) returns an aiming constraint object that
represents a constraint on a body specified by endeffector and sets the EndEffector property.

aimConst = constraintAiming(endeffector,Name=Value) returns an aiming constraint
object with each specified property name set to the specified value by one or more name-value pair
arguments.

Properties
EndEffector — Name of the end effector
string scalar | character vector

Name of the end effector, specified as a string scalar or character vector. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example: "left_palm"
Data Types: char | string

ReferenceBody — Name of the reference body frame
'' (default) | string scalar | character vector
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Name of the reference body frame, specified as a string scalar or character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Data Types: char | string

TargetPoint — Position of the target relative to the reference body
[0 0 0] (default) | [x y z] vector

Position of the target relative to the reference body, specified as an [x y z] vector. The constraint
uses the line between the origin of the EndEffector body frame and this target point for
maintaining the specified AngularTolerance.

AngularTolerance — Maximum allowed angle
0 (default) | numeric scalar

Maximum allowed angle between the z-axis of the end-effector frame and the line connecting the end-
effector origin to the target point, specified as a numeric scalar in radians.

Weights — Weight of the constraint
1 (default) | numeric scalar

Weight of the constraint, specified as a numeric scalar. This weight is used with the Weights
property of all the constraints specified in generalizedInverseKinematics to properly balance
each constraint.

Examples

Plan a Reaching Trajectory With Multiple Kinematic Constraints

This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.

Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

Add a fixed body to the robot model representing the center of the cup.
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body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.

Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.

heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
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                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]
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Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.

intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;

Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.
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fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));
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Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off
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If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Version History
Introduced in R2017a

constraintAiming was renamed
Behavior change in future release

The constraintAiming object was renamed from robotics.AimingConstraint. Use
constraintAiming for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintCartesianBounds | constraintJointBounds
| constraintDistanceBounds | constraintOrientationTarget | constraintPoseTarget |
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constraintPositionTarget | constraintFixedJoint | constraintPrismaticJoint |
constraintRevoluteJoint

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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constraintCartesianBounds
Create constraint to keep body origin inside Cartesian bounds

Description
The constraintCartesianBounds object describes a constraint on the position of one body (the
end effector) relative to a target frame fixed on another body (the reference body). This constraint is
satisfied if the position of the end-effector origin relative to the target frame remains within the
Bounds specified. The TargetTransform property is the homogeneous transform that converts
points in the target frame to points in the ReferenceBody frame.

Constraint objects are used in generalizedInverseKinematics objects to specify multiple
kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory With Multiple
Kinematic Constraints”.

Creation
Syntax
cartConst = constraintCartesianBounds(endeffector)
cartConst = constraintCartesianBounds(endeffector,Name=Value)

Description

cartConst = constraintCartesianBounds(endeffector) returns a Cartesian bounds object
that represents a constraint on the body of the robot model specified by endeffector and sets the
EndEffector property.

cartConst = constraintCartesianBounds(endeffector,Name=Value) returns a Cartesian
bounds object with each specified property name set to the specified value by one or more name-
value pair arguments.

Properties
EndEffector — Name of the end effector
string scalar | character vector

Name of the end effector, specified as a string scalar or character vector. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example: "left_palm"
Data Types: char | string

ReferenceBody — Name of the reference body frame
'' (default) | string scalar | character vector
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Name of the reference body frame, specified as a string scalar or character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).

TargetTransform — Pose of the target frame relative to the reference body
eye(4) (default) | matrix

Pose of the target frame relative to the reference body, specified as a matrix. The matrix is a
homogeneous transform that specifies the relative transformation to convert a point in the target
frame to the reference body frame.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

Bounds — Bounds on end-effector position relative to target frame
zeros(3,2) (default) | [xMin xMax; yMin yMax; zMin zMax] vector

Bounds on end-effector position relative to target frame, specified as a 3-by-2 vector, [xMin xMax;
yMin yMax; zMin zMax]. Each row defines the minimum and maximum values for the xyz-
coordinates respectively.

Weights — Weights of the constraint
[1 1 1] (default) | [x y z] vector

Weights of the constraint, specified as an [x y z] vector. Each element of the vector corresponds to
the weight for the xyz-coordinates, respectively. These weights are used with the Weights property
of all the constraints specified in generalizedInverseKinematics to properly balance each
constraint.

Examples

Plan a Reaching Trajectory With Multiple Kinematic Constraints

This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.

Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

 constraintCartesianBounds

1-79



Add a fixed body to the robot model representing the center of the cup.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.

Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.

1 Classes

1-80



heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]
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Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.

intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;

Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.
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fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));
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Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off
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If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Version History
Introduced in R2017a

constraintCartesianBounds was renamed
Behavior change in future release

The constraintCartesianBounds object was renamed from robotics.CartesianBounds. Use
constraintCartesianBounds for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintDistanceBounds |
constraintJointBounds | constraintOrientationTarget | constraintPoseTarget |
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constraintPositionTarget | constraintFixedJoint | constraintPrismaticJoint |
constraintRevoluteJoint

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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constraintDistanceBounds
Constrain body within distance bounds of reference body

Description
The constraintDistanceBounds object describes a constraint on the distance of one body (the
end effector) relative to another body (the reference body) within the same rigidBodyTree. This
constraint is satisfied if the distance, d, of the end effector origin relative to the reference body origin
frame is within the specified bounds.

Creation

Syntax
distConst = constraintDistanceBounds(endeffector)
distConst = constraintDistanceBounds(endeffector,Name=Value)

Description

distConst = constraintDistanceBounds(endeffector) returns a distance bounds constraint
object, distConst, that represents a constraint on distance between the specified endeffector
and the reference body specified by the ReferenceBody property.

distConst = constraintDistanceBounds(endeffector,Name=Value) specifies properties
using one or more name-value arguments.

Properties
EndEffector — Name of end effector
string scalar | character vector

Name of the end effector, specified as a string scalar or character vector. When using this constraint
with a generalizedInverseKinematics solver, the name must match a body specified in the
associated RigidBodyTree robot model.
Example: "left_palm"
Data Types: char | string

ReferenceBody — Name of reference body frame
'' (default) | string scalar | character vector

Name of the reference body frame, specified as a character vector or string scalar. The default ''
indicates that the constraint is relative to the base of the robot model. When using this constraint
with a generalizedInverseKinematics solver, the name must match a body specified in the
associated RigidBodyTree robot model.
Example: "base"
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Bounds — Distance bounds
[0 0] (default) | two-element row vector

Lower and upper distance bounds imposed on the end effector from the reference body, specified as a
two-element row vector of the form [minimum maximum].
Example: [1 3]

Weights — Weight of constraint
1 (default) | nonnegative numeric scalar

Weight of the constraint, specified as a numeric scalar. This weight is used with the Weights
property of all the constraints specified in generalizedInverseKinematics solver to properly
balance each constraint.
Example: 2

Examples

Create Distance Bounds Constraint

Create a constraintDistanceBounds object and observe its effect on an inverse kinematics
solution.

Load Robot and Set Up Solver

Load a Universal UR5e robot into the workspace, and create a generalized inverse kinematics solver.

rng default;
robot = loadrobot("universalUR5e",DataFormat="column");
gik = generalizedInverseKinematics("RigidBodyTree",robot);

Set the constraint inputs distance for a distance bounds constraint, and position for the target
constraint.

gik.ConstraintInputs = {'distance','position'};
gik.SolverParameters.MaxIterations = 100;

Create Distance Bounds Constraint

Create Distance Bounds constraint to constrain the origin of the end effector body, tool0, relative to
the origin of the reference frame, base.

constrDist = constraintDistanceBounds("tool0",ReferenceBody="base");

Set the minimum distance between two bodies to 0.25 meters, and the maximum distance to 0.5
meters. This constraint prevents the inverse kinematics solver from solving for a configuration that
violates the bounds.

minDist = 0.25;
maxDist = 0.5;
constrDist.Bounds = [minDist maxDist];

Constrain the first wrist link, wrist_1_link, to a target position to add some complexity.

forearmTgt = constraintPositionTarget('wrist_1_link');
forearmTgt.TargetPosition = [0.0 0.25 0.25];
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Visualize Constraint

Run the solver through three random configurations, using the constraints, and then display the
solver status. Each iteration, the solver finds a solution where the distance of the end effector is
either equal to or within the specified bounds. Visualize the bounds by using the
exampleHelperVisualizeBounds helper function to plot the distance bounds as two transparent
spheres.

for i = 1:3
    figure
    q0 = randomConfiguration(robot); % Initial guess for solver
    [q,solutionInfo] = gik(q0,constrDist,forearmTgt);
    show(robot,q);
    view(90,0)
    hold on
    exampleHelperVisualizeBounds(minDist,maxDist)
    hold off
    eeDist = norm(tform2trvec(getTransform(robot,q,"tool0")));
    display(["Solver Status: ",solutionInfo.Status])
    display(["End Effector Distance: ",num2str(eeDist)])
end

  1x2 string array

    "Solver Status: "    "success"
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  1x2 string array

    "End Effector Distance: "    "0.48425"

  1x2 string array

    "Solver Status: "    "success"

  1x2 string array

    "End Effector Distance: "    "0.29671"

1 Classes

1-90



  1x2 string array

    "Solver Status: "    "success"

  1x2 string array

    "End Effector Distance: "    "0.48713"

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintJointBounds | constraintOrientationTarget | constraintPoseTarget |
constraintPositionTarget | constraintRevoluteJoint | constraintPrismaticJoint |
constraintFixedJoint
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constraintFixedJoint
Fixed joint constraint between bodies

Description
The constraintFixedJoint object describes a closed-loop fixed joint constraint between a
successor and predecessor body on the same rigidBodyTree. The constraint is satisfied when there
is no relative orientation, and the origins of the frames coincide. This constraint allows no relative
motion between the intermediate frames when satisfied.

Creation
Syntax
fixedConst = constraintFixedJoint(successorbody,predecessorbody)
fixedConst = constraintFixedJoint( ___ ,Name=Value)

Description

fixedConst = constraintFixedJoint(successorbody,predecessorbody) returns a fixed
constraint object, fixedConst, that represents a constraint between the specified successor body
successorbody and predecessor body predecessorbody of the joint. The successorbody and
predecessor arguments set the SuccessorBody and PredecessorBody properties, respectively.

fixedConst = constraintFixedJoint( ___ ,Name=Value) specifies properties using one more
name-value pair arguments in addition to all input arguments from the previous syntax.

Properties
SuccessorBody — Name of successor body of joint
string scalar | character vector

Name of the successor body frame, specified as a string scalar or character vector. When using this
constraint with the generalizedInverseKinematics inverse kinematics (IK) solver, the name
must match a body specified in the RigidBodyTree of the generalizedInverseKinematics
object.

PredecessorBody — Name of predecessor body of joint
string scalar | character vector

Name of the predecessor body frame, specified as a string scalar or character vector. When using this
constraint with the generalizedInverseKinematics inverse kinematics (IK) solver, the name
must match a body specified in the RigidBodyTree of the generalizedInverseKinematics
object.

SuccessorTransform — Fixed transform of joint constraint with respect to successor body
frame
eye(4) (default) | 4-by-4 matrix
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Fixed transform of the joint constraint with respect to the successor body frame, specified as 4-by-4
matrix.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

PredecessorTransform — Fixed transform of joint constraint with respect to predecessor
body frame
eye(4) (default) | 4-by-4 matrix

Fixed transform of the joint constraint with respect to the predecessor body frame, specified as 4-by-4
matrix.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

PositionTolerance — Position tolerance of joint constraint
0 (default) | nonnegative scalar

Position tolerance of the joint constraint in meters, specified as a non-negative scalar.

OrientationTolerance — Orientation tolerance of joint constraint
0 (default) | nonnegative scalar

Orientation tolerance of the joint constraint in meters, specified as a nonnegative scalar.

Weights — Weights of constraint
[1 1] (default) | two-element vector

Weights of the constraint, specified as a two-element vector. The elements of the vector corresponds
to the weights for the PositionTolerance and OrientationTolerance properties, respectively.
These weights are used with the weights of all the constraints specified in the
generalizedInverseKinematics solver to properly balance each constraint.
Example: [1 4]

Examples

Create Loop-Closure Joint Constraints

Create a revolute, prismatic, and fixed joint constraints for a simple rigid body tree.

Use the exampleHelperFourBarLinkageTree helper function to create a simple robot model to
demonstrate the closed-loop constraints.

rbt = exampleHelperFourBarLinkageTree;
show(rbt,Collisions="on");
view([0 0 pi])
xlim([-1 4])
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Revolute Joint Constraint

To demonstrate a revolute joint constraint, create a four-bar linkage by connecting the end of the last
link, link3, and the first link, link0.

Create a generalized inverse kinematics solver with a revolute joint constraint and a joint bounds
constraint.

gikSolverWithRevoluteJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'revolute','jointbounds'});

To ensure repeatable IK solutions, disable random restarts.

gikSolverWithRevoluteJointConstraint.SolverParameters.AllowRandomRestart = false;
theta = pi/2+pi/4;

Fix the first joint by setting theta as both the minimum and maximum bound.

activeJointConstraint = constraintJointBounds(rbt);
activeJointConstraint.Weights = [1 0 0];
activeJointConstraint.Bounds(1,:) = [theta theta];

Create a revolute joint constraint with successor and predecessor bodies set to the last link link3
and the first link link0, respectively. Specifiy predecessor and successor transforms that create
intermediate frames 1 meter away, in the X-axis, from their respective body. Once defined, these
intermediate frames move such that their frame origins coincide when their Z-axes align.
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cRev = constraintRevoluteJoint("link3","link0", ...
    PredecessorTransform=trvec2tform([1 0 0]), ...
    SuccessorTransform=trvec2tform([1 0 0]));

Provide [theta 0 0] as an initial guess to the solver, along with the constraints.

qConst = gikSolverWithRevoluteJointConstraint([theta 0 0],cRev,activeJointConstraint);

Visualize the robot to see the robot acting as a four-bar linkage. If the first joint rotates, the solver
tries to keep the intermediate frames of the revolute joint constraint coincident, acting as a joint and
resulting in four-bar motion.

figure(Name="Revolute Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:

             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])
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Prismatic Joint Constraint

Use a prismatic joint constraint to create a slider-crank. Create a new solver with a prismatic joint
constraint and a joint bounds constraint.

gikSolverWithPrismaticJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'prismatic','jointbounds'});
gikSolverWithPrismaticJointConstraint.SolverParameters.AllowRandomRestart=false;

Create the prismatic joint constraint with link3 and link0 as the successor and predecessor bodies,
respectively, and set the predecessor transfrom such that the predecessor intermediate frame is 1
meter away on the X-axis and rotated pi/2 in the Y-axis from the predecessor body frame.

cPris=constraintPrismaticJoint("link3","link0",PredecessorTransform=trvec2tform([1 0 0])*eul2tform([0 pi/2 0]));

Provide [theta 0 0] as an initial guess to the solver along with the constraints.

qConst = gikSolverWithPrismaticJointConstraint([theta 0 0],cPris,activeJointConstraint);

Visualize the robot to see the robot acting as a slider-crank. If the first joint rotates, the solver tries to
keep the intermediate frames of the prismatic joint constraint coincident, acting as a joint and
resulting in slider-crank motion.

figure(Name="Prismatic Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:
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             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])

Fixed Joint Constraint

To demonstrate a fixed joint constraint, create a triangle with the links that is preserved when the
first joint moves. Create a new solver with a fixed joint constraint.

gikSolverWithFixedJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'fixed'});

Create the fixed joint constraint with link3 and link0 as the successor and predecessor bodies,
respectively, and set the successor transform such that the predecessor intermediate frame is 1
meter away on the X-axis from the predecessor body frame.

cFix = constraintFixedJoint("link3","link1",SuccessorTransform=trvec2tform([1 0 0]));
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Set the weight of the orientation constraint of the fixed joint constraint to 0.

cFix.Weights = [1 0];
[qConst,solInfo] = gikSolverWithFixedJointConstraint([theta 0.1 0],cFix);

Visualize the robot to see how the fixed constraint joint acts on the robot frame. If the first joint
rotates, the solver tries to keep the intermediate frames of the fixed joint constraint coincident,
acting as a fixed joint.

figure(Name="Fixed Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:

             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])
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Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintJointBounds | constraintOrientationTarget | constraintPoseTarget |
constraintPositionTarget | constraintRevoluteJoint | constraintPrismaticJoint |
constraintDistanceBounds

Topics
“Solve Inverse Kinematics for Closed Loop Linkages”
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constraintJointBounds
Create constraint on joint positions of robot model

Description
The constraintJointBounds object describes a constraint on the joint positions of a rigid body
tree. This constraint is satisfied if the robot configuration vector maintains all joint positions within
the Bounds specified. The configuration vector contains positions for all nonfixed joints in a
rigidBodyTree object.

Constraint objects are used in generalizedInverseKinematics objects to specify multiple
kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory With Multiple
Kinematic Constraints”.

Creation
Syntax
jointConst = constraintJointBounds(robot)
jointConst = constraintJointBounds(robot,Name=Value)

Description

jointConst = constraintJointBounds(robot) returns a joint position bounds object that
represents a constraint on the configuration vector of the robot model specified by robot.

jointConst = constraintJointBounds(robot,Name=Value) returns a joint position bounds
object with each specified property name set to the specified value by one or more name-value pair
arguments.

Input Arguments

robot — Rigid body tree model
rigidBodyTree object

Rigid body tree model, specified as a rigidBodyTree object.

Properties
Bounds — Bounds on the configuration vector
n-by-2 matrix

Bounds on the configuration vector, specified as an n-by-2 matrix. Each row of the array corresponds
to a nonfixed joint on the robot model and gives the minimum and maximum position for that joint. By
default, the bounds are set based on the PositionLimits property of each rigidBodyJoint object
within the input rigid body tree model, robot.
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Weights — Weights of the constraint
ones(1,n) (default) | n-element vector

Weights of the constraint, specified as an n-element vector, where each element corresponds to a row
in Bounds and gives relative weights for each bound. The default is a vector of ones to give equal
weight to all joint positions. These weights are used with the Weights property of all the constraints
specified in generalizedInverseKinematics to properly balance each constraint

Examples

Plan a Reaching Trajectory With Multiple Kinematic Constraints

This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.

Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

Add a fixed body to the robot model representing the center of the cup.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.
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numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.

Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.

heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

1 Classes

1-102



          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]

Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.
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intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;

Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.

fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
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                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));

 constraintJointBounds

1-105



Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off
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If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Version History
Introduced in R2017a

constraintJointBounds was renamed
Behavior change in future release

The constraintJointBounds object was renamed from robotics.JointPositionBounds. Use
constraintJointBounds for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintDistanceBounds | constraintOrientationTarget | constraintPoseTarget |
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constraintPositionTarget | constraintFixedJoint | constraintPrismaticJoint |
constraintRevoluteJoint

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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constraintOrientationTarget
Create constraint on relative orientation of body

Description
The constraintOrientationTarget object describes a constraint that requires the orientation of
one body (the end effector) to match a target orientation within an angular tolerance in any direction.
The target orientation is specified relative to the body frame of the reference body.

Constraint objects are used in generalizedInverseKinematics objects to specify multiple
kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory With Multiple
Kinematic Constraints”.

Creation

Syntax
orientationConst = constraintOrientationTarget(endeffector)
orientationConst = constraintOrientationTarget(endeffector,Name=Value)

Description

orientationConst = constraintOrientationTarget(endeffector) returns an orientation
target object that represents a constraint on a body of the robot model specified by endeffector
and sets the EndEffector property.

orientationConst = constraintOrientationTarget(endeffector,Name=Value) returns
an orientation target object with each specified property name set to the specified value by one or
more name-value pair arguments.

Properties
EndEffector — Name of the end effector
string scalar | character vector

Name of the end effector, specified as a string scalar or character vector. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example: "left_palm"
Data Types: char | string

ReferenceBody — Name of the reference body frame
'' (default) | string scalar | character vector
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Name of the reference body frame, specified as a string scalar or character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Data Types: char | string

TargetOrientation — Target orientation of the end effector relative to the reference body
[1 0 0 0] (default) | four-element vector

Target orientation of the end effector relative to the reference body, specified as four-element vector
that represents a unit quaternion. The orientation of the end effector relative to the reference body
frame is the orientation that converts a direction specified in the end-effector frame to the same
direction specified in the reference body frame.

OrientationTolerance — Maximum allowed rotation angle
0 (default) | numeric scalar

Maximum allowed rotation angle in radians, specified as a numeric scalar. This value is the upper
bound on the magnitude of the rotation required to make the end-effector orientation match the
target orientation.

Weights — Weight of the constraint
1 (default) | numeric scalar

Weight of the constraint, specified as a numeric scalar. This weight is used with the Weights
property of all the constraints specified in generalizedInverseKinematics to properly balance
each constraint.

Examples

Plan a Reaching Trajectory With Multiple Kinematic Constraints

This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.

Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];
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Add a fixed body to the robot model representing the center of the cup.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.

Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.
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heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]
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Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.

intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;

Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.

 constraintOrientationTarget

1-113



fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));
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Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off
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If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Version History
Introduced in R2017a

constraintOrientationTarget was renamed
Behavior change in future release

The constraintOrientationTarget object was renamed from robotics.OrientationTarget.
Use constraintOrientationTarget for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintDistanceBounds | constraintJointBounds | constraintPoseTarget |
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constraintPositionTarget | constraintFixedJoint | constraintPrismaticJoint |
constraintRevoluteJoint

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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constraintPoseTarget
Create constraint on relative pose of body

Description
The constraintPoseTarget object describes a constraint that requires the pose of one body (the
end effector) to match a target pose within a distance and angular tolerance in any direction. The
target pose is specified relative to the body frame of the reference body.

Constraint objects are used in generalizedInverseKinematics objects to specify multiple
kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory With Multiple
Kinematic Constraints”.

Creation

Syntax
poseConst = constraintPoseTarget(endeffector)
poseConst = constraintPoseTarget(endeffector,Name=Value)

Description

poseConst = constraintPoseTarget(endeffector) returns a pose target object that
represents a constraint on the body of the robot model specified by endeffector and sets the
EndEffector property.

poseConst = constraintPoseTarget(endeffector,Name=Value) returns a pose target object
with each specified property name set to the specified value by one or more name-value pair
arguments.

Properties
EndEffector — Name of the end effector
string scalar | character vector

Name of the end effector, specified as a string scalar or character vector. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example: "left_palm"
Data Types: char | string

ReferenceBody — Name of the reference body frame
'' (default) | string scalar | character vector
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Name of the reference body frame, specified as a string scalar or character vector. The default ''
indicates that the constraint is relative to the base of the robot model. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example:
Data Types: char | string

TargetTransform — Pose of the target frame relative to the reference body
eye(4) (default) | matrix

Pose of the target frame relative to the reference body, specified as a matrix. The matrix is a
homogeneous transform that specifies the relative transformation to convert a point in the target
frame to the reference body frame.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

OrientationTolerance — Maximum allowed rotation angle
0 (default) | numeric scalar

Maximum allowed rotation angle in radians, specified as a numeric scalar. This value is the upper
bound on the magnitude of the rotation required to make the end-effector orientation match the
target orientation.
Example:

PositionTolerance — Maximum allowed distance from target
0 (default) | numeric scalar in meters

Maximum allowed distance from target, specified as a numeric scalar in meters. This value is the
upper bound on the distance between the end-effector origin and the target position.
Example:

Weights — Weights of the constraint
[1 1] (default) | two-element vector

Weights of the constraint, specified as a two-element vector. Each element of the vector corresponds
to the weight for the PositionTolerance and OrientationTolerance respectively. These
weights are used with the Weights of all the constraints specified in
generalizedInverseKinematics to properly balance each constraint.
Example:

Examples

Plan a Reaching Trajectory With Multiple Kinematic Constraints

This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.
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Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.

cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

Add a fixed body to the robot model representing the center of the cup.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:
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      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.

Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.

heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:
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         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:

     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]

Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.

intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.
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[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;

Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.

fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.
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gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));

Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off
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If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Version History
Introduced in R2017a

constraintPoseTarget was renamed
Behavior change in future release

The constraintPoseTarget object was renamed from robotics.PoseTarget. Use
constraintPoseTarget for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintDistanceBounds | constraintJointBounds | constraintOrientationTarget |
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constraintPositionTarget | constraintFixedJoint | constraintPrismaticJoint |
constraintRevoluteJoint

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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constraintPositionTarget
Create constraint on relative position of body

Description
The constraintPositionTarget object describes a constraint that requires the position of one
body (the end effector) to match a target position within a distance tolerance in any direction. The
target position is specified relative to the body frame of the reference body.

Constraint objects are used in generalizedInverseKinematics objects to specify multiple
kinematic constraints on a robot.

For an example that uses multiple constraint objects, see “Plan a Reaching Trajectory With Multiple
Kinematic Constraints”.

Creation

Syntax
positionConst = constraintPositionTarget(endeffector)
positionConst = constraintPositionTarget(endeffector,Name=Value)

Description

positionConst = constraintPositionTarget(endeffector) returns a position target object
that represents a constraint on the body of the robot model specified by endeffector and sets the
EndEffector property.

positionConst = constraintPositionTarget(endeffector,Name=Value) returns a
position target object with each specified property name set to the specified value by one or more
name-value pair arguments.

Properties
EndEffector — Name of the end effector
string scalar | character vector

Name of the end effector, specified as a string scalar or character vector. When using this constraint
with generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example: "left_palm"
Data Types: char | string

ReferenceBody — Name of the reference body frame
'' (default) | character vector

 constraintPositionTarget

1-127



Name of the reference body frame, specified as a character vector. The default '' indicates that the
constraint is relative to the base of the robot model. When using this constraint with
generalizedInverseKinematics, the name must match a body specified in the robot model
(rigidBodyTree).
Example:

TargetPosition — Position of the target relative to the reference body
[0 0 0] (default) | [x y z] vector

Position of the target relative to the reference body, specified as an [x y z] vector. The target
position is a point specified in the reference body frame.
Example:

PositionTolerance — Maximum allowed distance from target
0 (default) | numeric scalar

Maximum allowed distance from target in meters, specified as a numeric scalar. This value is the
upper bound on the distance between the end-effector origin and the target position.
Example:

Weights — Weight of the constraint
1 (default) | numeric scalar

Weight of the constraint, specified as a numeric scalar. This weight is used with the Weights
property of all the constraints specified in generalizedInverseKinematics to properly balance
each constraint.
Example:

Examples

Plan a Reaching Trajectory With Multiple Kinematic Constraints

This example shows how to use generalized inverse kinematics to plan a joint-space trajectory for a
robotic manipulator. It combines multiple constraints to generate a trajectory that guides the gripper
to a cup resting on a table. These constraints ensure that the gripper approaches the cup in a straight
line and that the gripper remains at a safe distance from the table, without requiring the poses of the
gripper to be determined in advance.

Set Up the Robot Model

This example uses a model of the KUKA LBR iiwa, a 7 degree-of-freedom robot manipulator. 
importrobot generates a rigidBodyTree model from a description stored in a Unified Robot
Description Format (URDF) file.

lbr = importrobot('iiwa14.urdf'); % 14 kg payload version
lbr.DataFormat = 'row';
gripper = 'iiwa_link_ee_kuka';

Define dimensions for the cup.
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cupHeight = 0.2;
cupRadius = 0.05;
cupPosition = [-0.5, 0.5, cupHeight/2];

Add a fixed body to the robot model representing the center of the cup.

body = rigidBody('cupFrame');
setFixedTransform(body.Joint, trvec2tform(cupPosition))
addBody(lbr, body, lbr.BaseName);

Define the Planning Problem

The goal of this example is to generate a sequence of robot configurations that satisfy the following
criteria:

• Start in the home configuration
• No abrupt changes in robot configuration
• Keep the gripper at least 5 cm above the "table" (z = 0)
• The gripper should be aligned with the cup as it approaches
• Finish with the gripper 5 cm from the center of the cup

This example utilizes constraint objects to generate robot configurations that satisfy these criteria.
The generated trajectory consists of five configuration waypoints. The first waypoint, q0, is set as the
home configuration. Pre-allocate the rest of the configurations in qWaypoints using repmat.

numWaypoints = 5;
q0 = homeConfiguration(lbr);
qWaypoints = repmat(q0, numWaypoints, 1);

Create a generalizedInverseKinematics solver that accepts the following constraint inputs:

• Cartesian bounds - Limits the height of the gripper
• A position target - Specifies the position of the cup relative to the gripper.
• An aiming constraint - Aligns the gripper with the cup axis
• An orientation target - Maintains a fixed orientation for the gripper while approaching the cup
• Joint position bounds - Limits the change in joint positions between waypoints.

gik = generalizedInverseKinematics('RigidBodyTree', lbr, ...
    'ConstraintInputs', {'cartesian','position','aiming','orientation','joint'})

gik = 
  generalizedInverseKinematics with properties:

      NumConstraints: 5
    ConstraintInputs: {1x5 cell}
       RigidBodyTree: [1x1 rigidBodyTree]
     SolverAlgorithm: 'BFGSGradientProjection'
    SolverParameters: [1x1 struct]

Create Constraint Objects

Create the constraint objects that are passed as inputs to the solver. These object contain the
parameters needed for each constraint. Modify these parameters between calls to the solver as
necessary.
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Create a Cartesian bounds constraint that requires the gripper to be at least 5 cm above the table
(negative z direction). All other values are given as inf or -inf.

heightAboveTable = constraintCartesianBounds(gripper);
heightAboveTable.Bounds = [-inf, inf; ...
                           -inf, inf; ...
                           0.05, inf]

heightAboveTable = 
  constraintCartesianBounds with properties:

        EndEffector: 'iiwa_link_ee_kuka'
      ReferenceBody: ''
    TargetTransform: [4x4 double]
             Bounds: [3x2 double]
            Weights: [1 1 1]

Create a constraint on the position of the cup relative to the gripper, with a tolerance of 5 mm.

distanceFromCup = constraintPositionTarget('cupFrame');
distanceFromCup.ReferenceBody = gripper;
distanceFromCup.PositionTolerance = 0.005

distanceFromCup = 
  constraintPositionTarget with properties:

          EndEffector: 'cupFrame'
        ReferenceBody: 'iiwa_link_ee_kuka'
       TargetPosition: [0 0 0]
    PositionTolerance: 0.0050
              Weights: 1

Create an aiming constraint that requires the z-axis of the iiwa_link_ee frame to be approximately
vertical, by placing the target far above the robot. The iiwa_link_ee frame is oriented such that
this constraint aligns the gripper with the axis of the cup.

alignWithCup = constraintAiming('iiwa_link_ee');
alignWithCup.TargetPoint = [0, 0, 100]

alignWithCup = 
  constraintAiming with properties:

         EndEffector: 'iiwa_link_ee'
       ReferenceBody: ''
         TargetPoint: [0 0 100]
    AngularTolerance: 0
             Weights: 1

Create a joint position bounds constraint. Set the Bounds property of this constraint based on the
previous configuration to limit the change in joint positions.

limitJointChange = constraintJointBounds(lbr)

limitJointChange = 
  constraintJointBounds with properties:
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     Bounds: [7x2 double]
    Weights: [1 1 1 1 1 1 1]

Create an orientation constraint for the gripper with a tolerance of one degree. This constraint
requires the orientation of the gripper to match the value specified by the TargetOrientation
property. Use this constraint to fix the orientation of the gripper during the final approach to the cup.

fixOrientation = constraintOrientationTarget(gripper);
fixOrientation.OrientationTolerance = deg2rad(1)

fixOrientation = 
  constraintOrientationTarget with properties:

             EndEffector: 'iiwa_link_ee_kuka'
           ReferenceBody: ''
       TargetOrientation: [1 0 0 0]
    OrientationTolerance: 0.0175
                 Weights: 1

Find a Configuration That Points at the Cup

This configuration should place the gripper at a distance from the cup, so that the final approach can
be made with the gripper properly aligned.

intermediateDistance = 0.3;

Constraint objects have a Weights property which determines how the solver treats conflicting
constraints. Setting the weights of a constraint to zero disables the constraint. For this configuration,
disable the joint position bounds and orientation constraint.

limitJointChange.Weights = zeros(size(limitJointChange.Weights));
fixOrientation.Weights = 0;

Set the target position for the cup in the gripper frame. The cup should lie on the z-axis of the gripper
at the specified distance.

distanceFromCup.TargetPosition = [0,0,intermediateDistance];

Solve for the robot configuration that satisfies the input constraints using the gik solver. You must
specify all the input constraints. Set that configuration as the second waypoint.

[qWaypoints(2,:),solutionInfo] = gik(q0, heightAboveTable, ...
                       distanceFromCup, alignWithCup, fixOrientation, ...
                       limitJointChange);

Find Configurations That Move Gripper to the Cup Along a Straight Line

Re-enable the joint position bound and orientation constraints.

limitJointChange.Weights = ones(size(limitJointChange.Weights));
fixOrientation.Weights = 1;

Disable the align-with-cup constraint, as the orientation constraint makes it redundant.

alignWithCup.Weights = 0;
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Set the orientation constraint to hold the orientation based on the previous configuration
(qWaypoints(2,:)). Get the transformation from the gripper to the base of the robot model.
Convert the homogeneous transformation to a quaternion.

fixOrientation.TargetOrientation = ...
    tform2quat(getTransform(lbr,qWaypoints(2,:),gripper));

Define the distance between the cup and gripper for each waypoint

finalDistanceFromCup = 0.05;
distanceFromCupValues = linspace(intermediateDistance, finalDistanceFromCup, numWaypoints-1);

Define the maximum allowed change in joint positions between each waypoint.

maxJointChange = deg2rad(10);

Call the solver for each remaining waypoint.

for k = 3:numWaypoints
    % Update the target position.
    distanceFromCup.TargetPosition(3) = distanceFromCupValues(k-1);
    % Restrict the joint positions to lie close to their previous values.
    limitJointChange.Bounds = [qWaypoints(k-1,:)' - maxJointChange, ...
                               qWaypoints(k-1,:)' + maxJointChange];
    % Solve for a configuration and add it to the waypoints array.
    [qWaypoints(k,:),solutionInfo] = gik(qWaypoints(k-1,:), ...
                                         heightAboveTable, ...
                                         distanceFromCup, alignWithCup, ...
                                         fixOrientation, limitJointChange);
end

Visualize the Generated Trajectory

Interpolate between the waypoints to generate a smooth trajectory. Use pchip to avoid overshoots,
which might violate the joint limits of the robot.

framerate = 15;
r = rateControl(framerate);
tFinal = 10;
tWaypoints = [0,linspace(tFinal/2,tFinal,size(qWaypoints,1)-1)];
numFrames = tFinal*framerate;
qInterp = pchip(tWaypoints,qWaypoints',linspace(0,tFinal,numFrames))';

Compute the gripper position for each interpolated configuration.

gripperPosition = zeros(numFrames,3);
for k = 1:numFrames
    gripperPosition(k,:) = tform2trvec(getTransform(lbr,qInterp(k,:), ...
                                                    gripper));
end

Show the robot in its initial configuration along with the table and cup

figure;
show(lbr, qWaypoints(1,:), 'PreservePlot', false);
hold on
exampleHelperPlotCupAndTable(cupHeight, cupRadius, cupPosition);
p = plot3(gripperPosition(1,1), gripperPosition(1,2), gripperPosition(1,3));
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Animate the manipulator and plot the gripper position.

hold on
for k = 1:size(qInterp,1)
    show(lbr, qInterp(k,:), 'PreservePlot', false);
    p.XData(k) = gripperPosition(k,1);
    p.YData(k) = gripperPosition(k,2);
    p.ZData(k) = gripperPosition(k,3);
    waitfor(r);
end
hold off
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If you want to save the generated configurations to a MAT-file for later use, execute the following:

>> save('lbr_trajectory.mat', 'tWaypoints', 'qWaypoints');

Version History
Introduced in R2017a

constraintPositionTarget was renamed
Behavior change in future release

The constraintPositionTarget object was renamed from robotics.PositionTarget. Use
constraintPositionTarget for all object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintDistanceBounds | constraintJointBounds | constraintOrientationTarget |

1 Classes

1-134



constraintPoseTarget | constraintFixedJoint | constraintPrismaticJoint |
constraintRevoluteJoint

Topics
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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constraintPrismaticJoint
Prismatic joint constraint between bodies

Description
The constraintPrismaticJoint object describes a closed-loop prismatic joint constraint between
a successor and predecessor body on the same rigidBodyTree. This constraint is satisfied when the
intermediate frame origin of the successor body lies on the Z-axis of the intermediate frame of the
predecessor body, and there is no relative orientation between the frames. When satisfied, this
constraint allows linear motion along the common Z-axes of the intermediate frames.

Creation

Syntax
prisConst = constraintPrismaticJoint(successorbody,predecessorbody)
prisConst = constraintPrismaticJoint( ___ ,Name=Value)

Description

prisConst = constraintPrismaticJoint(successorbody,predecessorbody) returns a
prismatic constraint object, prisConst, that represents a constraint between the specified successor
body successorbody and predecessor body predecessorbody of the joint. The successorbody
and predecessor arguments set the SuccessorBody and PredecessorBody properties,
respectively..

prisConst = constraintPrismaticJoint( ___ ,Name=Value) specifies properties using one
more name-value pair arguments in addition to all input arguments from the previous syntax.

Properties
SuccessorBody — Name of successor body of joint
string scalar | character vector

Name of the successor body frame, specified as a string scalar or character vector. When using this
constraint with the generalizedInverseKinematics inverse kinematics (IK) solver, the name
must match a body specified in the RigidBodyTree of the generalizedInverseKinematics
object.

PredecessorBody — Name of predecessor body of joint
string scalar | character vector

Name of the predecessor body frame, specified as a string scalar or character vector. When using this
constraint with the generalizedInverseKinematics inverse kinematics (IK) solver, the name
must match a body specified in the RigidBodyTree of the generalizedInverseKinematics
object.
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SuccessorTransform — Fixed transform of joint constraint with respect to successor body
frame
eye(4) (default) | 4-by-4 matrix

Fixed transform of the joint constraint with respect to the successor body frame, specified as 4-by-4
matrix.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

PredecessorTransform — Fixed transform of joint constraint with respect to predecessor
body frame
eye(4) (default) | 4-by-4 matrix

Fixed transform of the joint constraint with respect to the predecessor body frame, specified as 4-by-4
matrix.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

PositionTolerance — Position tolerance of joint constraint
0 (default) | nonnegative scalar

Position tolerance of the joint constraint, in meters, specified as a nonnegative scalar.

JointPositionLimits — Position limits of joint constraint
[-100 100] (default) | two-element row vector

Position limits of the joint constraint, in meters, specified as a two-element row vector of the form
[minimum maximum].
Example: [-25 50]

OrientationTolerance — Orientation tolerance of joint constraint
0 (default) | nonnegative scalar

Orientation tolerance of the joint constraint, in radians, specified as a nonnegative scalar.

Weights — Weights of the constraint
[1 1 1] (default) | three-element row vector

Weights of the constraint, specified as a three-element vector. The elements of the vector correspond
to the weights for the PositionTolerance, OrientationTolerance, and
JointPositionLimits properties, respectively. These weights are used with the weights of all the
constraints specified in the generalizedInverseKinematics solver, and can be used to specify
the relative importance of a constraint violation to the solver.
Example: [0 1 4]

Examples

Create Loop-Closure Joint Constraints

Create a revolute, prismatic, and fixed joint constraints for a simple rigid body tree.

Use the exampleHelperFourBarLinkageTree helper function to create a simple robot model to
demonstrate the closed-loop constraints.
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rbt = exampleHelperFourBarLinkageTree;
show(rbt,Collisions="on");
view([0 0 pi])
xlim([-1 4])

Revolute Joint Constraint

To demonstrate a revolute joint constraint, create a four-bar linkage by connecting the end of the last
link, link3, and the first link, link0.

Create a generalized inverse kinematics solver with a revolute joint constraint and a joint bounds
constraint.

gikSolverWithRevoluteJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'revolute','jointbounds'});

To ensure repeatable IK solutions, disable random restarts.

gikSolverWithRevoluteJointConstraint.SolverParameters.AllowRandomRestart = false;
theta = pi/2+pi/4;

Fix the first joint by setting theta as both the minimum and maximum bound.

activeJointConstraint = constraintJointBounds(rbt);
activeJointConstraint.Weights = [1 0 0];
activeJointConstraint.Bounds(1,:) = [theta theta];

Create a revolute joint constraint with successor and predecessor bodies set to the last link link3
and the first link link0, respectively. Specifiy predecessor and successor transforms that create
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intermediate frames 1 meter away, in the X-axis, from their respective body. Once defined, these
intermediate frames move such that their frame origins coincide when their Z-axes align.

cRev = constraintRevoluteJoint("link3","link0", ...
    PredecessorTransform=trvec2tform([1 0 0]), ...
    SuccessorTransform=trvec2tform([1 0 0]));

Provide [theta 0 0] as an initial guess to the solver, along with the constraints.

qConst = gikSolverWithRevoluteJointConstraint([theta 0 0],cRev,activeJointConstraint);

Visualize the robot to see the robot acting as a four-bar linkage. If the first joint rotates, the solver
tries to keep the intermediate frames of the revolute joint constraint coincident, acting as a joint and
resulting in four-bar motion.

figure(Name="Revolute Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:

             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])
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Prismatic Joint Constraint

Use a prismatic joint constraint to create a slider-crank. Create a new solver with a prismatic joint
constraint and a joint bounds constraint.

gikSolverWithPrismaticJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'prismatic','jointbounds'});
gikSolverWithPrismaticJointConstraint.SolverParameters.AllowRandomRestart=false;

Create the prismatic joint constraint with link3 and link0 as the successor and predecessor bodies,
respectively, and set the predecessor transfrom such that the predecessor intermediate frame is 1
meter away on the X-axis and rotated pi/2 in the Y-axis from the predecessor body frame.

cPris=constraintPrismaticJoint("link3","link0",PredecessorTransform=trvec2tform([1 0 0])*eul2tform([0 pi/2 0]));

Provide [theta 0 0] as an initial guess to the solver along with the constraints.

qConst = gikSolverWithPrismaticJointConstraint([theta 0 0],cPris,activeJointConstraint);

Visualize the robot to see the robot acting as a slider-crank. If the first joint rotates, the solver tries to
keep the intermediate frames of the prismatic joint constraint coincident, acting as a joint and
resulting in slider-crank motion.

figure(Name="Prismatic Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:
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             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])

Fixed Joint Constraint

To demonstrate a fixed joint constraint, create a triangle with the links that is preserved when the
first joint moves. Create a new solver with a fixed joint constraint.

gikSolverWithFixedJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'fixed'});

Create the fixed joint constraint with link3 and link0 as the successor and predecessor bodies,
respectively, and set the successor transform such that the predecessor intermediate frame is 1
meter away on the X-axis from the predecessor body frame.

cFix = constraintFixedJoint("link3","link1",SuccessorTransform=trvec2tform([1 0 0]));
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Set the weight of the orientation constraint of the fixed joint constraint to 0.

cFix.Weights = [1 0];
[qConst,solInfo] = gikSolverWithFixedJointConstraint([theta 0.1 0],cFix);

Visualize the robot to see how the fixed constraint joint acts on the robot frame. If the first joint
rotates, the solver tries to keep the intermediate frames of the fixed joint constraint coincident,
acting as a fixed joint.

figure(Name="Fixed Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:

             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])
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Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintJointBounds | constraintOrientationTarget | constraintPoseTarget |
constraintPositionTarget | constraintRevoluteJoint | constraintFixedJoint |
constraintDistanceBounds

Topics
“Solve Inverse Kinematics for Closed Loop Linkages”
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constraintRevoluteJoint
Revolute joint constraint between bodies

Description
The constraintRevoluteJoint object describes a closed-loop revolute joint constraint between a
successor and predecessor body on the same rigidBodyTree. The constraint is satisfied when the
Z-axes of the body intermediate frames align and their frame origins coincide. When satisfied, this
constraint allows rotation along the Z-axes of the intermediate frames.

Creation

Syntax
revConst = constraintRevoluteJoint(successorbody,predecessorbody)
revConst = constraintRevoluteJoint( ___ ,Name=Value)

Description

revConst = constraintRevoluteJoint(successorbody,predecessorbody) returns a
revolute joint constraint object, revConst, that represents a constraint between the specified
successor body successorbody and predecessor body predecessorbody of the joint. The
successorbody and predecessor arguments set the SuccessorBody and PredecessorBody
properties, respectively.

revConst = constraintRevoluteJoint( ___ ,Name=Value) specifies properties using one
more name-value pair arguments in addition to all input arguments from the previous syntax.

Properties
SuccessorBody — Name of successor body of joint
string scalar | character vector

Name of the successor body frame, specified as a string scalar or character vector. When using this
constraint with the generalizedInverseKinematics inverse kinematics (IK) solver, the name
must match a body specified in the RigidBodyTree of the generalizedInverseKinematics
object.

PredecessorBody — Name of predecessor body of joint
string scalar | character vector

Name of the predecessor body frame, specified as a string scalar or character vector. When using this
constraint with the generalizedInverseKinematics inverse kinematics (IK) solver, the name
must match a body specified in the RigidBodyTree of the generalizedInverseKinematics
object.
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SuccessorTransform — Fixed transform of joint constraint with respect to successor body
frame
eye(4) (default) | 4-by-4 matrix

Fixed transform of the joint constraint with respect to the successor body frame, specified as 4-by-4
matrix.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

PredecessorTransform — Fixed transform of joint constraint with respect to predecessor
body frame
eye(4) (default) | 4-by-4 matrix

Fixed transform of the joint constraint with respect to the predecessor body frame, specified as 4-by-4
matrix.
Example: [1 0 0 1; 0 1 0 1; 0 0 1 1; 0 0 0 1]

PositionTolerance — Position tolerance of joint constraint
0 (default) | nonnegative scalar

Position tolerance of the joint constraint in radians, specified as a non-negative scalar.

JointPositionLimits — Joint position limits
[-3.1416 3.1416] (default) | two-element row vector

Position limits of the joint constraint, in radians, specified as a two-element row vector in the form
[minimum maximum].
Example: [-1.5708 1.5708]

OrientationTolerance — Orientation tolerance of joint constraint
0 (default) | nonnegative scalar

Orientation tolerance of the joint constraint in radians, specified as a nonnegative scalar.

Weights — Weights of the constraint
[1 1 1] (default) | three-element vector

Weights of the constraint, specified as a three-element vector. The elements of the vector correspond
to the weights for the PositionTolerance, OrientationTolerance, and
JointPositionLimits properties, respectively. These weights are used with the weights of all the
constraints specified in the generalizedInverseKinematics solver, and can be used to specify
the relative importance of a constraint violation to the solver.
Example: [0 1 4]

Examples

Create Loop-Closure Joint Constraints

Create a revolute, prismatic, and fixed joint constraints for a simple rigid body tree.

Use the exampleHelperFourBarLinkageTree helper function to create a simple robot model to
demonstrate the closed-loop constraints.
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rbt = exampleHelperFourBarLinkageTree;
show(rbt,Collisions="on");
view([0 0 pi])
xlim([-1 4])

Revolute Joint Constraint

To demonstrate a revolute joint constraint, create a four-bar linkage by connecting the end of the last
link, link3, and the first link, link0.

Create a generalized inverse kinematics solver with a revolute joint constraint and a joint bounds
constraint.

gikSolverWithRevoluteJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'revolute','jointbounds'});

To ensure repeatable IK solutions, disable random restarts.

gikSolverWithRevoluteJointConstraint.SolverParameters.AllowRandomRestart = false;
theta = pi/2+pi/4;

Fix the first joint by setting theta as both the minimum and maximum bound.

activeJointConstraint = constraintJointBounds(rbt);
activeJointConstraint.Weights = [1 0 0];
activeJointConstraint.Bounds(1,:) = [theta theta];

Create a revolute joint constraint with successor and predecessor bodies set to the last link link3
and the first link link0, respectively. Specifiy predecessor and successor transforms that create
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intermediate frames 1 meter away, in the X-axis, from their respective body. Once defined, these
intermediate frames move such that their frame origins coincide when their Z-axes align.

cRev = constraintRevoluteJoint("link3","link0", ...
    PredecessorTransform=trvec2tform([1 0 0]), ...
    SuccessorTransform=trvec2tform([1 0 0]));

Provide [theta 0 0] as an initial guess to the solver, along with the constraints.

qConst = gikSolverWithRevoluteJointConstraint([theta 0 0],cRev,activeJointConstraint);

Visualize the robot to see the robot acting as a four-bar linkage. If the first joint rotates, the solver
tries to keep the intermediate frames of the revolute joint constraint coincident, acting as a joint and
resulting in four-bar motion.

figure(Name="Revolute Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:

             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])
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Prismatic Joint Constraint

Use a prismatic joint constraint to create a slider-crank. Create a new solver with a prismatic joint
constraint and a joint bounds constraint.

gikSolverWithPrismaticJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'prismatic','jointbounds'});
gikSolverWithPrismaticJointConstraint.SolverParameters.AllowRandomRestart=false;

Create the prismatic joint constraint with link3 and link0 as the successor and predecessor bodies,
respectively, and set the predecessor transfrom such that the predecessor intermediate frame is 1
meter away on the X-axis and rotated pi/2 in the Y-axis from the predecessor body frame.

cPris=constraintPrismaticJoint("link3","link0",PredecessorTransform=trvec2tform([1 0 0])*eul2tform([0 pi/2 0]));

Provide [theta 0 0] as an initial guess to the solver along with the constraints.

qConst = gikSolverWithPrismaticJointConstraint([theta 0 0],cPris,activeJointConstraint);

Visualize the robot to see the robot acting as a slider-crank. If the first joint rotates, the solver tries to
keep the intermediate frames of the prismatic joint constraint coincident, acting as a joint and
resulting in slider-crank motion.

figure(Name="Prismatic Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:
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             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])

Fixed Joint Constraint

To demonstrate a fixed joint constraint, create a triangle with the links that is preserved when the
first joint moves. Create a new solver with a fixed joint constraint.

gikSolverWithFixedJointConstraint = generalizedInverseKinematics(RigidBodyTree=rbt, ...
    ConstraintInputs={'fixed'});

Create the fixed joint constraint with link3 and link0 as the successor and predecessor bodies,
respectively, and set the successor transform such that the predecessor intermediate frame is 1
meter away on the X-axis from the predecessor body frame.

cFix = constraintFixedJoint("link3","link1",SuccessorTransform=trvec2tform([1 0 0]));
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Set the weight of the orientation constraint of the fixed joint constraint to 0.

cFix.Weights = [1 0];
[qConst,solInfo] = gikSolverWithFixedJointConstraint([theta 0.1 0],cFix);

Visualize the robot to see how the fixed constraint joint acts on the robot frame. If the first joint
rotates, the solver tries to keep the intermediate frames of the fixed joint constraint coincident,
acting as a fixed joint.

figure(Name="Fixed Joint Constraint")
show(rbt,qConst,Collisions="on")

ans = 
  Axes (Primary) with properties:

             XLim: [-2.5000 2.5000]
             YLim: [-2.5000 2.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

view([0 0 pi])
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Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
generalizedInverseKinematics | constraintAiming | constraintCartesianBounds |
constraintJointBounds | constraintOrientationTarget | constraintPoseTarget |
constraintPositionTarget | constraintPrismaticJoint | constraintFixedJoint |
constraintDistanceBounds

Topics
“Solve Inverse Kinematics for Closed Loop Linkages”
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controllerPurePursuit
Create controller to follow set of waypoints

Description
The controllerPurePursuit System object™ creates a controller object used to make a
differential-drive vehicle follow a set of waypoints. The object computes the linear and angular
velocities for the vehicle given the current pose. Successive calls to the object with updated poses
provide updated velocity commands for the vehicle. Use the MaxAngularVelocity and
DesiredLinearVelocity properties to update the velocities based on the vehicle's performance.

The LookaheadDistance property computes a look-ahead point on the path, which is a local goal for
the vehicle. The angular velocity command is computed based on this point. Changing
LookaheadDistance has a significant impact on the performance of the algorithm. A higher look-
ahead distance results in a smoother trajectory for the vehicle, but can cause the vehicle to cut
corners along the path. A low look-ahead distance can result in oscillations in tracking the path,
causing unstable behavior. For more information on the pure pursuit algorithm, see “Pure Pursuit
Controller”.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

To compute linear and angular velocity control commands:

1 Create the controllerPurePursuit object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
controller = controllerPurePursuit

controller = controllerPurePursuit(Name,Value)

Description

controller = controllerPurePursuit creates a pure pursuit object that uses the pure pursuit
algorithm to compute the linear and angular velocity inputs for a differential drive vehicle.

controller = controllerPurePursuit(Name,Value) creates a pure pursuit object with
additional options specified by one or more Name,Value pairs. Name is the property name and Value
is the corresponding value. Name must appear inside single quotes (' '). You can specify several
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name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN. Properties not
specified retain their default values.
Example: controller = controllerPurePursuit('DesiredLinearVelocity', 0.5)

Properties
DesiredLinearVelocity — Desired constant linear velocity
0.1 (default) | scalar in meters per second

Desired constant linear velocity, specified as a scalar in meters per second. The controller assumes
that the vehicle drives at a constant linear velocity and that the computed angular velocity is
independent of the linear velocity.
Data Types: double

LookaheadDistance — Look-ahead distance
1.0 (default) | scalar in meters

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes the response
of the controller. A vehicle with a higher look-ahead distance produces smooth paths but takes larger
turns at corners. A vehicle with a smaller look-ahead distance follows the path closely and takes
sharp turns, but potentially creating oscillations in the path.
Data Types: double

MaxAngularVelocity — Maximum angular velocity
1.0 (default) | scalar in radians per second

Maximum angular velocity, specified a scalar in radians per second. The controller saturates the
absolute angular velocity output at the given value.
Data Types: double

Waypoints — Waypoints
[ ] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of waypoints. You can
generate the waypoints from the mobileRobotPRM class or from another source.
Data Types: double

Usage

Syntax
[vel,angvel] = controller(pose)
[vel,angvel,lookaheadpoint] = controller(pose)

Description

[vel,angvel] = controller(pose) processes the vehicle's position and orientation, pose, and
outputs the linear velocity, vel, and angular velocity, angvel.
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[vel,angvel,lookaheadpoint] = controller(pose) returns the look-ahead point, which is a
location on the path used to compute the velocity commands. This location on the path is computed
using the LookaheadDistance property on the controller object.

Input Arguments

pose — Position and orientation of vehicle
3-by-1 vector in the form [x y theta]

Position and orientation of vehicle, specified as a 3-by-1 vector in the form [x y theta]. The vehicle
pose is an x and y position with angular orientation θ (in radians) measured from the x-axis.

Output Arguments

vel — Linear velocity
scalar in meters per second

Linear velocity, specified as a scalar in meters per second.
Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

lookaheadpoint — Look-ahead point on path
[x y] vector

Look-ahead point on the path, returned as an [x y] vector. This value is calculated based on the
LookaheadDistance property.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to controllerPurePursuit
info Characteristic information about controllerPurePursuit object

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

1 Classes

1-154



Get Additional Pure Pursuit Object Information

Use the info method to get more information about a controllerPurePursuit object. The info
function returns two fields, RobotPose and LookaheadPoint, which correspond to the current
position and orientation of the robot and the point on the path used to compute outputs from the last
call of the object.

Create a controllerPurePursuit object.

pp = controllerPurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given as the
input.

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

s = struct with fields:
         RobotPose: [0 0 0]
    LookaheadPoint: [0.7071 0.7071]

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Use in a MATLAB Function block is not supported.

For additional information about code generation for System objects, see “System Objects in MATLAB
Code Generation” (MATLAB Coder)

See Also
binaryOccupancyMap | occupancyMap | mobileRobotPRM

Topics
“Path Following for a Differential Drive Robot”
“Pure Pursuit Controller”
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differentialDriveKinematics
Differential-drive vehicle model

Description
differentialDriveKinematics creates a differential-drive vehicle model to simulate simplified
vehicle dynamics. This model approximates a vehicle with a single fixed axle and wheels separated by
a specified track width. The wheels can be driven independently. Vehicle speed and heading is defined
from the axle center. The state of the vehicle is defined as a three-element vector, [x y theta], with a
global xy-position, specified in meters, and a vehicle heading, theta, specified in radians. To compute
the time derivative states for the model, use the derivative function with input commands and the
current robot state.

Creation
Syntax
kinematicModel = differentialDriveKinematics

kinematicModel = differentialDriveKinematics(Name,Value)

Description

kinematicModel = differentialDriveKinematics creates a differential drive kinematic model
object with default property values.

kinematicModel = differentialDriveKinematics(Name,Value) sets properties on the
object to the specified value. You can specify multiple properties in any order.

Properties
WheelRadius — Wheel radius of vehicle
0.05 (default) | positive numeric scalar

The wheel radius of the vehicle, specified in meters.
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WheelSpeedRange — Range of vehicle wheel speeds
[-Inf Inf] (default) | two-element vector

The vehicle speed range is a two-element vector that provides the minimum and maximum vehicle
speeds, [MinSpeed MaxSpeed], specified in meters per second.

TrackWidth — Distance between wheels on axle
0.2 (default) | positive numeric scalar

The vehicle track width refers to the distance between the wheels, or the axle length, specified in
meters.

VehicleInputs — Type of motion inputs for vehicle
"WheelSpeeds" (default) | character vector | string scalar

The VehicleInputs property specifies the format of the model input commands when using the
derivative function. Options are specified as one of the following strings:

• "WheelSpeeds" — Angular speeds for each of the wheels, specified in radians per second.
• "VehicleSpeedHeadingRate" — Vehicle speed and heading angular velocity, specified in

meters per second and radians per second respectively.

Object Functions
derivative Time derivative of vehicle state

Examples

Plot Path of Differential-Drive Kinematic Robot

Create a Robot

Define a robot and set the initial starting position and orientation.

kinematicModel = differentialDriveKinematics;
initialState = [0 0 0];

Simulate Robot Motion

Set the timespan of the simulation to 1 s with 0.05 s timesteps and the input commands to 50 rad/s
for the left wheel and 40 rad/s for the right wheel to result in a right turn. Simulate the motion of the
robot by using the ode45 solver on the derivative function.

tspan = 0:0.05:1;
inputs = [50 40]; %Left wheel is spinning faster
[t,y] = ode45(@(t,y)derivative(kinematicModel,y,inputs),tspan,initialState);

Plot Path

figure
plot(y(:,1),y(:,2))
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Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
ackermannKinematics | bicycleKinematics | unicycleKinematics

Blocks
Differential Drive Kinematic Model

Functions
derivative
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Topics
“Path Following for a Differential Drive Robot”
“Simulate Different Kinematic Models for Mobile Robots”
“Mobile Robot Kinematics Equations”
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extendedObjectMesh
Mesh representation of extended object

Description
The extendedObjectMesh represents the 3-D geometry of an object. The 3-D geometry is
represented by faces and vertices. Use these object meshes to specify the geometry of an
robotPlatform for simulating lidar sensor data using robotLidarPointCloudGenerator.

Creation

Syntax
mesh = extendedObjectMesh('cuboid')
mesh = extendedObjectMesh('cylinder')
mesh = extendedObjectMesh('cylinder',n)
mesh = extendedObjectMesh('sphere')
mesh = extendedObjectMesh('sphere',n)
mesh = extendedObjectMesh(vertices,faces)

Description

mesh = extendedObjectMesh('cuboid') returns an extendedObjectMesh object, that defines
a cuboid with unit dimensions. The origin of the cuboid is located at its geometric center.

mesh = extendedObjectMesh('cylinder') returns a hollow cylinder mesh with unit
dimensions. The cylinder mesh has 20 equally spaced vertices around its circumference. The origin of
the cylinder is located at its geometric center. The height is aligned with the z-axis.

mesh = extendedObjectMesh('cylinder',n) returns a cylinder mesh with n equally spaced
vertices around its circumference.

mesh = extendedObjectMesh('sphere') returns a sphere mesh with unit dimensions. The
sphere mesh has 119 vertices and 180 faces. The origin of the sphere is located at its center.

mesh = extendedObjectMesh('sphere',n) additionally allows you to specify the resolution, n,
of the spherical mesh. The sphere mesh has (n + 1)2 - 2 vertices and 2n(n - 1) faces.

mesh = extendedObjectMesh(vertices,faces) returns a mesh from faces and vertices.
vertices and faces set the Vertices and Faces properties respectively.

Properties
Vertices — Vertices of defined object
N-by-3 matrix of real scalar
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Vertices of the defined object, specified as an N-by-3 matrix of real scalars. N is the number of
vertices. The first, second, and third element of each row represents the x-, y-, and z-position of each
vertex, respectively.

Faces — Faces of defined object
M-by-3 matrix of positive integer

Faces of the defined object, specified as a M-by-3 array of positive integers. M is the number of faces.
The three elements in each row are the vertex IDs of the three vertices forming the triangle face. The
ID of the vertex is its corresponding row number specified in the Vertices property.

Object Functions
Use the object functions to develop new meshes.
applyTransform Apply forward transformation to mesh vertices
join Join two object meshes
rotate Rotate mesh about coordinate axes
scale Scale mesh in each dimension
scaleToFit Auto-scale object mesh to match specified cuboid dimensions
show Display the mesh as a patch on the current axes
translate Translate mesh along coordinate axes

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];
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Create and Visualize Cylinder Mesh

Create an extendedObjectMesh object and visualize the object.

Construct a cylinder mesh.

mesh = extendedObjectMesh('cylinder');

Visualize the mesh.

ax = show(mesh);
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Create and Auto-Scale Sphere Mesh

Create an extendedObjectMesh object and auto-scale the object to the required dimensions.

Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5,'Width',10,'Height',3,'OriginOffset',[0 0 -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);
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Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotLidarPointCloudGenerator

Functions
applyTransform | join | rotate | scale | scaleToFit | show | translate
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generalizedInverseKinematics
Create multiconstraint inverse kinematics solver

Description
The generalizedInverseKinematics System object uses a set of kinematic constraints to
compute a joint configuration for the rigid body tree model specified by a rigidBodyTree object.
The generalizedInverseKinematics object uses a nonlinear solver to satisfy the constraints or
reach the best approximation.

Specify the constraint types, ConstraintInputs, before calling the object. To change constraint
inputs after calling the object, call release(gik).

Specify the constraint inputs as constraint objects and call generalizedInverseKinematics with
these objects passed into it. To create constraint objects, use the following objects:

• constraintAiming
• constraintCartesianBounds
• constraintJointBounds
• constraintOrientationTarget
• constraintPoseTarget
• constraintPositionTarget
• constraintDistanceBounds
• constraintFixedJoint
• constraintPrismaticJoint
• constraintRevoluteJoint

If your only constraint is the end-effector position and orientation, consider using
inverseKinematics as your solver instead.

For closed-form analytical inverse kinematics solutions, see analyticalInverseKinematics.

To solve the generalized inverse kinematics constraints:

1 Create the generalizedInverseKinematics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
gik = generalizedInverseKinematics
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gik = generalizedInverseKinematics('RigidBodyTree',rigidbodytree,'
ConstraintInputs',inputTypes)
gik = generalizedInverseKinematics(Name,Value)

Description

gik = generalizedInverseKinematics returns a generalized inverse kinematics solver with no
rigid body tree model specified. Specify a rigidBodyTree model and the ConstraintInputs
property before using this solver.

gik = generalizedInverseKinematics('RigidBodyTree',rigidbodytree,'
ConstraintInputs',inputTypes) returns a generalized inverse kinematics solver with the rigid
body tree model and the expected constraint inputs specified.

gik = generalizedInverseKinematics(Name,Value) returns a generalized inverse kinematics
solver with each specified property name set to the specified value by one or more Name,Value pair
arguments. Name must appear inside single quotes (''). You can specify several name-value pair
arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumConstraints — Number of constraint inputs
scalar

This property is read-only.

Number of constraint inputs, specified as a scalar. The value of this property is the number of
constraint types specified in the ConstraintInputs property.

ConstraintInputs — Constraint input types
cell array of character vectors

Constraint input types, specified as a cell array of character vectors. The possible constraint input
types with their associated constraint objects are:

• 'orientation' — constraintOrientationTarget
• 'position' — constraintPositionTarget
• 'pose' — constraintPoseTarget
• 'aiming' — constraintAiming
• 'cartesian' — constraintCartesianBounds
• 'jointbounds' — constraintJointBounds
• 'distance' — constraintDistanceBounds
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There are also closed-loop joint constraints that constrain two rigid bodies such that the constrained
motion is similar to that of an additional joint between the two bodies. Their constraint input types
with their associated constraint objects are:

• 'revolutejoint' — constraintRevoluteJoint
• 'prismaticjoint' — constraintPrismaticJoint
• 'fixedjoint' — constraintFixedJoint

Use the constraint objects to specify the required parameters and pass those object types into the
object when you call it. For example:

Create the generalized inverse kinematics solver object. Specify the RigidBodyTree and
ConstraintInputs properties.

gik = generalizedInverseKinematics(...
                    'RigidBodyTree',rigidbodytree,
                    'ConstraintInputs',{'position','aiming'});

Create the corresponding constraint objects.

positionTgt = constraintPositionTarget('left_palm');
aimConst = constraintAiming('right_palm');

Pass the constraint objects into the solver object with an initial guess.

configSol = gik(initialGuess,positionTgt,aimConst);

RigidBodyTree — Rigid body tree model
rigidBodyTree object

Rigid body tree model, specified as a rigidBodyTree object. Define this property before using the
solver. If you modify your rigid body tree model, reassign the rigid body tree to this property. For
example:

Create IK solver and specify the rigid body tree.

gik = generalizedInverseKinematics(...
                    'RigidBodyTree',rigidbodytree,
                    'ConstraintInputs',{'position','aiming'});

Modify the rigid body tree model.

addBody(rigidbodytree,rigidBody('body1'),'base')

Reassign the rigid body tree to the IK solver. If the solver or the step function is called before
modifying the rigid body tree model, use release to allow the property to be changed.

gik.RigidBodyTree = rigidbodytree;

SolverAlgorithm — Algorithm for solving inverse kinematics
'BFGSGradientProjection' (default) | 'LevenbergMarquardt'

Algorithm for solving inverse kinematics, specified as either 'BFGSGradientProjection' or
'LevenbergMarquardt'. For details of each algorithm, see “Inverse Kinematics Algorithms”.

SolverParameters — Parameters associated with algorithm
structure
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Parameters associated with the specified algorithm, specified as a structure. The fields in the
structure are specific to the algorithm. See “Solver Parameters”.

Usage

Syntax
[configSol,solInfo] = gik(initialguess,constraintObj,...,constraintObjN)

Description

[configSol,solInfo] = gik(initialguess,constraintObj,...,constraintObjN) finds a
joint configuration, configSol, based on the initial guess and a comma-separated list of constraint
description objects. The number of constraint descriptions depends on the ConstraintInputs
property.

Input Arguments

initialguess — Initial guess of robot configuration
structure array | vector

Initial guess of robot configuration, specified as a structure array or vector. The value of
initialguess depends on the DataFormat property of the object specified in the RigidBodyTree
property specified in gik.

Use this initial guess to guide the solver to the target robot configuration. However, the solution is
not guaranteed to be close to this initial guess.

constraintObj,...,constraintObjN — Constraint descriptions
constraint objects

Constraint descriptions defined by the ConstraintInputs property of gik, specified as one or more
of these constraint objects:

• constraintAiming
• constraintCartesianBounds
• constraintJointBounds
• constraintOrientationTarget
• constraintPoseTarget
• constraintPositionTarget

Output Arguments

configSol — Robot configuration solution
structure array | vector

Robot configuration solution, returned as a structure array or vector, depends on the DataFormat
property of the object specified in the RigidBodyTree property specified in gik.

The structure array contains these fields:

• JointName — Character vector for the name of the joint specified in the RigidBodyTree robot
model
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• JointPosition — Position of the corresponding joint

The vector output is an array of the joint positions that would be given in JointPosition for a
structure output.

This joint configuration is the computed solution that achieves the target end-effector pose within the
solution tolerance.

Note For revolute joints, if the joint limits exceed a range of 2*pi, where joint position wrapping
occurs, then the returned joint position is the one closest to the joint's lower bound.

solInfo — Solution information
structure

Solution information, returned as a structure containing these fields:

• Iterations — Number of iterations run by the solver.
• NumRandomRestarts — Number of random restarts because the solver got stuck in a local

minimum.
• ConstraintViolation — Information about the constraint, returned as a structure array. Each

structure in the array has these fields:

• Type: Type of the corresponding constraint input, as specified in the ConstraintInputs
property.

• Violation: Vector of constraint violations for the corresponding constraint type. 0 indicates
that the constraint is satisfied.

• ExitFlag — Code that gives more details on the solver execution and what caused it to return.
For the exit flags of each solver type, see “Exit Flags”.

• Status — Character vector describing whether the solution is within the tolerances defined by
each constraint ('success'). If the solution is outside the tolerance, the best possible solution
that the solver could find is given ('best available').

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Solve Generalized Inverse Kinematics for a Set of Constraints

Create a generalized inverse kinematics solver that holds a robotic arm at a specific location and
points toward the robot base. Create the constraint objects to pass the necessary constraint
parameters into the solver.

Load predefined KUKA LBR robot model, which is specified as a rigidBodyTree object.

load exampleRobots.mat lbr

Create the System object™ for solving generalized inverse kinematics.

gik = generalizedInverseKinematics;

Configure the System object to use the KUKA LBR robot.

gik.RigidBodyTree = lbr;

Tell the solver to expect a PositionTarget object and a constraintAiming and
constraintPositionTarget object as the constraint inputs.

gik.ConstraintInputs = {'position','aiming'};

Create the two constraint objects.

1 The origin of the body named tool0 is located at [0.0 0.5 0.5] relative to the robot's base
frame.

2 The z-axis of the body named tool0 points toward the origin of the robot's base frame.

posTgt = constraintPositionTarget('tool0');
posTgt.TargetPosition = [0.0 0.5 0.5];

aimCon = constraintAiming('tool0');
aimCon.TargetPoint = [0.0 0.0 0.0];

Find a configuration that satisfies the constraints. You must pass the constraint objects into the
System object in the order in which they were specified in the ConstraintInputs property. Specify
an initial guess at the robot configuration.

q0 = homeConfiguration(lbr); % Initial guess for solver
[q,solutionInfo] = gik(q0,posTgt,aimCon);

Visualize the configuration returned by the solver.

show(lbr,q);
title(['Solver status: ' solutionInfo.Status])
axis([-0.75 0.75 -0.75 0.75 -0.5 1])
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Plot a line segment from the target position to the origin of the base. The origin of the tool0 frame
coincides with one end of the segment, and its z-axis is aligned with the segment.

hold on
plot3([0.0 0.0],[0.5 0.0],[0.5 0.0],'--o')
hold off
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Version History
Introduced in R2017a

generalizedInverseKinematics was renamed
Behavior change in future release

The generalizedInverseKienematics object was renamed from
robotics.GeneralizedInverseKinematics. Use generalizedInverseKienematics for all
object creation.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When using code generation, you must specify the ConstraintInputs and RigidBodyTree
properties on construction of the object. For example:

gik = generalizedInverseKinematics(...
    'ConstraintInputs',{'pose','position'},...
    'RigidBodyTree',rigidbodytree);

You also cannot change the SolverAlgorithm property after creation. To specify the solver
algorithm on creation, use:
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gik = generalizedInverseKinematics(...
    'ConstraintInputs',{'pose','position'},...
    'RigidBodyTree',rigidbodytree,...
    'SolverAlgorithm','LevenbergMarquardt');

See Also
Objects
analyticalInverseKinematics | inverseKinematics | constraintPoseTarget |
constraintPositionTarget | constraintAiming | constraintCartesianBounds |
constraintJointBounds | constraintOrientationTarget

Topics
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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gpsSensor
GPS receiver simulation model

Description
The gpsSensor System object models data output from a Global Positioning System (GPS) receiver.
The object models the position noise as a first order Gauss Markov process, in which the sigma values
are specified in the HorizontalPositionAccuracy and the VerticalPositionAccuracy
properties. The object models the velocity noise as Gaussian noise with its sigma value specified in
the VelocityAccuracy property.

To model a GPS receiver:

1 Create the gpsSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation
Syntax
GPS = gpsSensor
GPS = gpsSensor('ReferenceFrame',RF)
GPS = gpsSensor( ___ ,Name,Value)

Description

GPS = gpsSensor returns a gpsSensor System object that computes a Global Positioning System
receiver reading based on a local position and velocity input signal. The default reference position in
geodetic coordinates is

• latitude: 0o N
• longitude: 0o E
• altitude: 0 m

GPS = gpsSensor('ReferenceFrame',RF) returns a gpsSensor System object that computes a
global positioning system receiver reading relative to the reference frame RF. Specify RF as 'NED'
(North-East-Down) or 'ENU' (East-North-Up). The default value is 'NED'.

GPS = gpsSensor( ___ ,Name,Value) sets each property Name to the specified Value.
Unspecified properties have default values.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

1 Classes

1-174



If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Update rate of receiver (Hz)
1 (default) | positive real scalar

Update rate of the receiver in Hz, specified as a positive real scalar.
Data Types: single | double

ReferenceLocation — Origin of local navigation reference frame
[0 0 0] (default) | [latitude longitude altitude]

Reference location, specified as a 3-element row vector in geodetic coordinates (latitude, longitude,
and altitude). Altitude is the height above the reference ellipsoid model, WGS84. The reference
location is in [degrees degrees meters]. The degree format is decimal degrees (DD).
Data Types: single | double

PositionInputFormat — Position coordinate input format
'Local' (default) | 'Geodetic'

Position coordinate input format, specified as 'Local' or 'Geodetic'.

• If you set the property as 'Local', then you need to specify the truePosition input as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed and defined
by the ReferenceLcation property. Additionally, when you specify the trueVelocity input,
you need to specify it with respect to this local navigation frame.

• If you set the property as 'Geodetic', then you need to specify the truePosition input as
geodetic coordinates in latitude, longitude, and altitude. Additionally, when you specify the
trueVelocity input, you need to specify it with respect to the navigation frame (NED or ENU)
whose origin corresponds to the truePosition input. When setting the property as
'Geodetic', the gpsSensor object neglects the ReferenceLocation property.

Data Types: character vector

HorizontalPositionAccuracy — Horizontal position accuracy (m)
1.6 (default) | nonnegative real scalar

Horizontal position accuracy in meters, specified as a nonnegative real scalar. The horizontal position
accuracy specifies the standard deviation of the noise in the horizontal position measurement.

Tunable: Yes
Data Types: single | double

VerticalPositionAccuracy — Vertical position accuracy (m)
3 (default) | nonnegative real scalar

Vertical position accuracy in meters, specified as a nonnegative real scalar. The vertical position
accuracy specifies the standard deviation of the noise in the vertical position measurement.

Tunable: Yes
Data Types: single | double
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VelocityAccuracy — Velocity accuracy (m/s)
0.1 (default) | nonnegative real scalar

Velocity accuracy in meters per second, specified as a nonnegative real scalar. The velocity accuracy
specifies the standard deviation of the noise in the velocity measurement.

Tunable: Yes
Data Types: single | double

DecayFactor — Global position noise decay factor
0.999 (default) | scalar in the range [0,1]

Global position noise decay factor, specified as a scalar in the range [0,1].

A decay factor of 0 models the global position noise as a white noise process. A decay factor of 1
models the global position noise as a random walk process.

Tunable: Yes
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as a character vector or string:

• 'Global stream' –– Random numbers are generated using the current global random number
stream.

• 'mt19937ar with seed' –– Random numbers are generated using the mt19937ar algorithm
with the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer scalar

Initial seed of an mt19937ar random number generator algorithm, specified as a nonnegative integer
scalar.
Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)

Description

[position,velocity,groundspeed,course] = GPS(truePosition,trueVelocity)
computes global navigation satellite system receiver readings from the position and velocity inputs.
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Input Arguments

truePosition — Position of GPS receiver in navigation coordinate system
N-by-3 matrix

Position of the GPS receiver in the navigation coordinate system, specified as a real finite N-by-3
matrix. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', specify truePosition as
Cartesian coordinates with respect to the local navigation frame whose origin is fixed at
ReferenceLocation.

• When the PositionInputFormat property is specified as 'Geodetic', specify truePosition
as geodetic coordinates in [latitude longitude altitude]. Latitude and longitude are
in meters. altitude is the height above the WGS84 ellipsoid model in meters.

Data Types: single | double

trueVelocity — Velocity of GPS receiver in navigation coordinate system (m/s)
N-by-3 matrix

Velocity of GPS receiver in the navigation coordinate system in meters per second, specified as a real
finite N-by-3 matrix. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', specify trueVelocity with
respect to the local navigation frame (NED or ENU) whose origin is fixed at
ReferenceLocation.

• When the PositionInputFormat property is specified as 'Geodetic', specify trueVelocity
with respect to the navigation frame (NED or ENU) whose origin corresponds to the
truePosition input.

Data Types: single | double

Output Arguments

position — Position in LLA coordinate system
N-by-3 matrix

Position of the GPS receiver in the geodetic latitude, longitude, and altitude (LLA) coordinate system,
returned as a real finite N-by-3 array. Latitude and longitude are in degrees with North and East
being positive. Altitude is in meters.

N is the number of samples in the current frame.
Data Types: single | double

velocity — Velocity in local navigation coordinate system (m/s)
N-by-3 matrix

Velocity of the GPS receiver in the local navigation coordinate system in meters per second, returned
as a real finite N-by-3 array. N is the number of samples in the current frame.

• When the PositionInputFormat property is specified as 'Local', the returned velocity is with
respect to the local navigation frame whose origin is fixed at ReferenceLocation.
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• When the PositionInputFormat property is specified as 'Geodetic', the returned velocity is
with respect to the navigation frame (NED or ENU) whose origin corresponds to the position
output.

Data Types: single | double

groundspeed — Magnitude of horizontal velocity in local navigation coordinate system
(m/s)
N-by-1 column vector

Magnitude of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
meters per second, returned as a real finite N-by-1 column vector.

N is the number of samples in the current frame.
Data Types: single | double

course — Direction of horizontal velocity in local navigation coordinate system (°)
N-by-1 column vector

Direction of the horizontal velocity of the GPS receiver in the local navigation coordinate system in
degrees, returned as a real finite N-by-1 column of values between 0 and 360. North corresponds to
360 degrees and East corresponds to 90 degrees.

N is the number of samples in the current frame.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate GPS Position Measurements From Stationary Input

Create a gpsSensor System object™ to model GPS receiver data. Assume a typical one Hz sample
rate and a 1000-second simulation time. Define the reference location in terms of latitude, longitude,
and altitude (LLA) of Natick, MA (USA). Define the sensor as stationary by specifying the true
position and velocity with zeros.

fs = 1;
duration = 1000;
numSamples = duration*fs;
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refLoc = [42.2825 -71.343 53.0352];

truePosition = zeros(numSamples,3);
trueVelocity = zeros(numSamples,3);

gps = gpsSensor('SampleRate',fs,'ReferenceLocation',refLoc);

Call gps with the specified truePosition and trueVelocity to simulate receiving GPS data for a
stationary platform.

position = gps(truePosition,trueVelocity);

Plot the true position and the GPS sensor readings for position.

t = (0:(numSamples-1))/fs;

subplot(3, 1, 1)
plot(t, position(:,1), ...
     t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
     t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')

subplot(3, 1, 3)
plot(t, position(:,3), ...
     t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')
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The position readings have noise controlled by HorizontalPositionAccuracy,
VerticalPositionAccuracy, VelocityAccuracy, and DecayFactor. The DecayFactor
property controls the drift in the noise model. By default, DecayFactor is set to 0.999, which
approaches a random walk process. To observe the effect of the DecayFactor property:

1 Reset the gps object.
2 Set DecayFactor to 0.5.
3 Call gps with variables specifying a stationary position.
4 Plot the results.

The GPS position readings now oscillate around the true position.

reset(gps)
gps.DecayFactor = 0.5;
position = gps(truePosition,trueVelocity);

subplot(3, 1, 1)
plot(t, position(:,1), ...
     t, ones(numSamples)*refLoc(1))
title('GPS Sensor Readings - Decay Factor = 0.5')
ylabel('Latitude (degrees)')

subplot(3, 1, 2)
plot(t, position(:,2), ...
     t, ones(numSamples)*refLoc(2))
ylabel('Longitude (degrees)')
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subplot(3, 1, 3)
plot(t, position(:,3), ...
     t, ones(numSamples)*refLoc(3))
ylabel('Altitude (m)')
xlabel('Time (s)')

Relationship Between Groundspeed and Course Accuracy

GPS receivers achieve greater course accuracy as groundspeed increases. In this example, you create
a GPS receiver simulation object and simulate the data received from a platform that is accelerating
from a stationary position.

Create a default gpsSensor System object™ to model data returned by a GPS receiver.

GPS = gpsSensor

GPS = 
  gpsSensor with properties:

                    SampleRate: 1                  Hz         
           PositionInputFormat: 'Local'                       
             ReferenceLocation: [0 0 0]            [deg deg m]
    HorizontalPositionAccuracy: 1.6                m          
      VerticalPositionAccuracy: 3                  m          
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              VelocityAccuracy: 0.1                m/s        
                  RandomStream: 'Global stream'               
                   DecayFactor: 0.999                         

Create matrices to describe the position and velocity of a platform in the NED coordinate system. The
platform begins from a stationary position and accelerates to 60 m/s North-East over 60 seconds,
then has a vertical acceleration to 2 m/s over 2 seconds, followed by a 2 m/s rate of climb for another
8 seconds. Assume a constant velocity, such that the velocity is the simple derivative of the position.

duration = 70;
numSamples = duration*GPS.SampleRate;

course = 45*ones(duration,1);
groundspeed = [(1:60)';60*ones(10,1)];

Nvelocity   = groundspeed.*sind(course);
Evelocity   = groundspeed.*cosd(course);
Dvelocity   = [zeros(60,1);-1;-2*ones(9,1)];
NEDvelocity = [Nvelocity,Evelocity,Dvelocity];

Ndistance   = cumsum(Nvelocity);
Edistance   = cumsum(Evelocity);
Ddistance   = cumsum(Dvelocity);
NEDposition = [Ndistance,Edistance,Ddistance];

Model GPS measurement data by calling the GPS object with your velocity and position matrices.

[~,~,groundspeedMeasurement,courseMeasurement] = GPS(NEDposition,NEDvelocity);

Plot the groundspeed and the difference between the true course and the course returned by the GPS
simulator.

As groundspeed increases, the accuracy of the course increases. Note that the velocity increase
during the last ten seconds has no effect, because the additional velocity is not in the ground plane.

t = (0:numSamples-1)/GPS.SampleRate;

subplot(2,1,1)
plot(t,groundspeed);
ylabel('Speed (m/s)')
title('Relationship Between Groundspeed and Course Accuracy')

subplot(2,1,2)
courseAccuracy = courseMeasurement - course;
plot(t,courseAccuracy)
xlabel('Time (s)');
ylabel('Course Accuracy (degrees)')
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Model GPS Receiver Data

Simulate GPS data received during a trajectory from the city of Natick, MA, to Boston, MA.

Define the decimal degree latitude and longitude for the city of Natick, MA USA, and Boston, MA
USA. For simplicity, set the altitude for both locations to zero.

NatickLLA = [42.27752809999999, -71.34680909999997, 0];
BostonLLA = [42.3600825, -71.05888010000001, 0];

Define a motion that can take a platform from Natick to Boston in 20 minutes. Set the origin of the
local NED coordinate system as Natick. Create a waypointTrajectory object to output the
trajectory 10 samples at a time.

fs = 1;
duration = 60*20;

bearing = 68; % degrees
distance = 25.39e3; % meters
distanceEast = distance*sind(bearing);
distanceNorth = distance*cosd(bearing);

NatickNED = [0,0,0];
BostonNED = [distanceNorth,distanceEast,0];
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trajectory = waypointTrajectory( ...
    'Waypoints', [NatickNED;BostonNED], ...
    'TimeOfArrival',[0;duration], ...
    'SamplesPerFrame',10, ...
    'SampleRate',fs);

Create a gpsSensor object to model receiving GPS data for the platform. Set the
HorizontalPositionalAccuracy to 25 and the DecayFactor to 0.25 to emphasize the noise.
Set the ReferenceLocation to the Natick coordinates in LLA.

GPS = gpsSensor( ...
    'HorizontalPositionAccuracy',25, ...
    'DecayFactor',0.25, ...
    'SampleRate',fs, ...
    'ReferenceLocation',NatickLLA);

Open a figure and plot the position of Natick and Boston in LLA. Ignore altitude for simplicity.

In a loop, call the gpsSensor object with the ground-truth trajectory to simulate the received GPS
data. Plot the ground-truth trajectory and the model of received GPS data.

figure(1)
plot(NatickLLA(1),NatickLLA(2),'ko', ...
     BostonLLA(1),BostonLLA(2),'kx')
xlabel('Latitude (degrees)')
ylabel('Longitude (degrees)')
title('GPS Sensor Data for Natick to Boston Trajectory')
hold on

while ~isDone(trajectory)
    [truePositionNED,~,trueVelocityNED] = trajectory();
    reportedPositionLLA = GPS(truePositionNED,trueVelocityNED);

    figure(1)
    plot(reportedPositionLLA(:,1),reportedPositionLLA(:,2),'r.')
end
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As a best practice, release System objects when complete.

release(GPS)
release(trajectory)

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
insSensor | robotSensor
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insSensor
Inertial navigation system and GNSS/GPS simulation model

Description
The insSensor System object models a device that fuses measurements from an inertial navigation
system (INS) and global navigation satellite system (GNSS) such as a GPS, and outputs the fused
measurements.

To output fused INS and GNSS measurements:

1 Create the insSensor object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
INS = insSensor
INS = insSensor(Name,Value)

Description

INS = insSensor returns a System object, INS, that models a device that outputs measurements
from an INS and GNSS.

INS = insSensor(Name,Value) sets properties on page 1-186 using one or more name-value
pairs. Unspecified properties have default values. Enclose each property name in quotes.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

MountingLocation — Location of sensor on platform (m)
[0 0 0] (default) | three-element real-valued vector of form [x y z]

Location of the sensor on the platform, in meters, specified as a three-element real-valued vector of
the form [x y z]. The vector defines the offset of the sensor origin from the origin of the platform.

Tunable: Yes
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Data Types: single | double

RollAccuracy — Accuracy of roll measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the roll measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Roll is the rotation around the x-axis of the sensor body. Roll noise is modeled as a white noise
process. RollAccuracy sets the standard deviation of the roll measurement noise.

Tunable: Yes
Data Types: single | double

PitchAccuracy — Accuracy of pitch measurement (deg)
0.2 (default) | nonnegative real scalar

Accuracy of the pitch measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Pitch is the rotation around the y-axis of the sensor body. Pitch noise is modeled as a white noise
process. PitchAccuracy defines the standard deviation of the pitch measurement noise.

Tunable: Yes
Data Types: single | double

YawAccuracy — Accuracy of yaw measurement (deg)
1 (default) | nonnegative real scalar

Accuracy of the yaw measurement of the sensor body, in degrees, specified as a nonnegative real
scalar.

Yaw is the rotation around the z-axis of the sensor body. Yaw noise is modeled as a white noise
process. YawAccuracy defines the standard deviation of the yaw measurement noise.

Tunable: Yes
Data Types: single | double

PositionAccuracy — Accuracy of position measurement (m)
[1 1 1] (default) | nonnegative real scalar | three-element real-valued vector

Accuracy of the position measurement of the sensor body, in meters, specified as a nonnegative real
scalar or a three-element real-valued vector. The elements of the vector set the accuracy of the x-, y-,
and z-position measurements, respectively. If you specify PositionAccuracy as a scalar value, then
the object sets the accuracy of all three positions to this value.

Position noise is modeled as a white noise process. PositionAccuracy defines the standard
deviation of the position measurement noise.

Tunable: Yes
Data Types: single | double

VelocityAccuracy — Accuracy of velocity measurement (m/s)
0.05 (default) | nonnegative real scalar
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Accuracy of the velocity measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Velocity noise is modeled as a white noise process. VelocityAccuracy defines the standard
deviation of the velocity measurement noise.

Tunable: Yes
Data Types: single | double

AccelerationAccuracy — Accuracy of acceleration measurement (m/s2)
0 (default) | nonnegative real scalar

Accuracy of the acceleration measurement of the sensor body, in meters per second, specified as a
nonnegative real scalar.

Acceleration noise is modeled as a white noise process. AccelerationAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

AngularVelocityAccuracy — Accuracy of angular velocity measurement (deg/s)
0 (default) | nonnegative real scalar

Accuracy of the angular velocity measurement of the sensor body, in meters per second, specified as
a nonnegative real scalar.

Angular velocity is modeled as a white noise process. AngularVelocityAccuracy defines the
standard deviation of the acceleration measurement noise.

Tunable: Yes
Data Types: single | double

TimeInput — Enable input of simulation time
false or 0 (default) | true or 1

Enable input of simulation time, specified as a logical 0 (false) or 1 (true). Set this property to
true to input the simulation time by using the simTime argument.

Tunable: No
Data Types: logical

HasGNSSFix — Enable GNSS fix
true or 1 (default) | false or 0

Enable GNSS fix, specified as a logical 1 (true) or 0 (false). Set this property to false to simulate
the loss of a GNSS receiver fix. When a GNSS receiver fix is lost, position measurements drift at a
rate specified by the PositionErrorFactor property.

Tunable: Yes
Dependencies

To enable this property, set TimeInput to true.
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Data Types: logical

PositionErrorFactor — Position error factor without GNSS fix
[0 0 0] (default) | nonnegative scalar | 1-by-3 vector of scalars

Position error factor without GNSS fix, specified as a scalar or a 1-by-3 vector of scalars.

When the HasGNSSFix property is set to false, the position error grows at a quadratic rate due to
constant bias in the accelerometer. The position error for a position component E(t) can be expressed
as E(t) = 1/2αt2, where α is the position error factor for the corresponding component and t is the
time since the GNSS fix is lost. While running, the object computes t based on the simTime input.
The computed E(t) values for the x, y, and z components are added to the corresponding position
components of the gTruth input.

Tunable: Yes

Dependencies

To enable this property, set TimeInput to true and HasGNSSFix to false.
Data Types: single | double

RandomStream — Random number source
'Global stream' (default) | 'mt19937ar with seed'

Random number source, specified as one of these options:

• 'Global stream' –– Generate random numbers using the current global random number
stream.

• 'mt19937ar with seed' –– Generate random numbers using the mt19937ar algorithm, with
the seed specified by the Seed property.

Data Types: char | string

Seed — Initial seed
67 (default) | nonnegative integer

Initial seed of the mt19937ar random number generator algorithm, specified as a nonnegative
integer.

Dependencies

To enable this property, set RandomStream to 'mt19937ar with seed'.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Usage

Syntax
measurement = INS(gTruth)
measurement = INS(gTruth,simTime)
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Description

measurement = INS(gTruth) models the data received from an INS sensor reading and GNSS
sensor reading. The output measurement is based on the inertial ground-truth state of the sensor
body, gTruth.

measurement = INS(gTruth,simTime) additionally specifies the time of simulation, simTime. To
enable this syntax, set the TimeInput property to true.

Input Arguments

gTruth — Inertial ground-truth state of sensor body
structure

Inertial ground-truth state of sensor body, in local Cartesian coordinates, specified as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The field values must be of type double or single.

The Position, Velocity, and Orientation fields are required. The other fields are optional.
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Example: struct('Position',[0 0 0],'Velocity',[0 0
0],'Orientation',quaternion([1 0 0 0]))

simTime — Simulation time
nonnegative real scalar

Simulation time, in seconds, specified as a nonnegative real scalar.
Data Types: single | double

Output Arguments

measurement — Measurement of sensor body motion
structure

Measurement of the sensor body motion, in local Cartesian coordinates, returned as a structure
containing these fields:

Field Description
'Position' Position, in meters, specified as a real, finite N-

by-3 matrix of [x y z] vectors. N is the number of
samples in the current frame.

'Velocity' Velocity (v), in meters per second, specified as a
real, finite N-by-3 matrix of [vx vy vz] vector. N is
the number of samples in the current frame.

'Orientation' Orientation with respect to the local Cartesian
coordinate system, specified as one of these
options:

• N-element column vector of quaternion
objects

• 3-by-3-by-N array of rotation matrices
• N-by-3 matrix of [xroll ypitch zyaw] angles in

degrees

Each quaternion or rotation matrix is a frame
rotation from the local Cartesian coordinate
system to the current sensor body coordinate
system. N is the number of samples in the current
frame.

'Acceleration' Acceleration (a), in meters per second squared,
specified as a real, finite N-by-3 matrix of [ax ay
az] vectors. N is the number of samples in the
current frame.

'AngularVelocity' Angular velocity (ω), in degrees per second
squared, specified as a real, finite N-by-3 matrix
of [ωx ωy ωz] vectors. N is the number of samples
in the current frame.

The returned field values are of type double or single and are of the same type as the
corresponding field values in the gTruth input.
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to insSensor
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
step Run System object algorithm
clone Create duplicate System object
isLocked Determine if System object is in use
reset Reset internal states of System object
release Release resources and allow changes to System object property values and input

characteristics

Examples

Generate INS Measurements from Stationary Input

Create a motion structure that defines a stationary position at the local north-east-down (NED) origin.
Because the platform is stationary, you need to define only a single sample. Assume the ground-truth
motion is sampled for 10 seconds with a 100 Hz sample rate. Create a default insSensor System
object™. Preallocate variables to hold output from the insSensor object.

Fs = 100;
duration = 10;
numSamples = Fs*duration;

motion = struct( ...
    'Position',zeros(1,3), ...
    'Velocity',zeros(1,3), ...
    'Orientation',ones(1,1,'quaternion'));

INS = insSensor;

positionMeasurements = zeros(numSamples,3);
velocityMeasurements = zeros(numSamples,3);
orientationMeasurements = zeros(numSamples,1,'quaternion');

In a loop, call INS with the stationary motion structure to return the position, velocity, and orientation
measurements in the local NED coordinate system. Log the position, velocity, and orientation
measurements.

for i = 1:numSamples
    
    measurements = INS(motion);
    
    positionMeasurements(i,:) = measurements.Position;
    velocityMeasurements(i,:) = measurements.Velocity;
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    orientationMeasurements(i) = measurements.Orientation;
    
end

Convert the orientation from quaternions to Euler angles for visualization purposes. Plot the position,
velocity, and orientation measurements over time.

orientationMeasurements = eulerd(orientationMeasurements,'ZYX','frame');

t = (0:(numSamples-1))/Fs;

subplot(3,1,1)
plot(t,positionMeasurements)
title('Position')
xlabel('Time (s)')
ylabel('Position (m)')
legend('North','East','Down')

subplot(3,1,2)
plot(t,velocityMeasurements)
title('Velocity')
xlabel('Time (s)')
ylabel('Velocity (m/s)')
legend('North','East','Down')

subplot(3,1,3)
plot(t,orientationMeasurements)
title('Orientation')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
legend('Roll', 'Pitch', 'Yaw')
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Generate INS Measurements for a Turning Platform

Generate INS measurements using the insSensor System object™. Use waypointTrajectory to
generate the ground-truth path.

Specify a ground-truth orientation that begins with the sensor body x-axis aligned with North and
ends with the sensor body x-axis aligned with East. Specify waypoints for an arc trajectory and a
time-of-arrival vector for the corresponding waypoints. Use a 100 Hz sample rate. Create a
waypointTrajectory System object with the waypoint constraints, and set SamplesPerFrame so
that the entire trajectory is output with one call.

eulerAngles = [0,0,0; ...
               0,0,0; ...
               90,0,0; ...
               90,0,0];
orientation = quaternion(eulerAngles,'eulerd','ZYX','frame');

r = 20;
waypoints = [0,0,0; ...
             100,0,0; ...
             100+r,r,0; ...
             100+r,100+r,0];

toa = [0,10,10+(2*pi*r/4),20+(2*pi*r/4)];
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Fs = 100;
numSamples = floor(Fs*toa(end));

path = waypointTrajectory('Waypoints',waypoints, ...
    'TimeOfArrival',toa, ...
    'Orientation',orientation, ...
    'SampleRate',Fs, ...
    'SamplesPerFrame',numSamples);

Create an insSensor System object to model receiving INS data. Set the PositionAccuracy to
0.1.

ins = insSensor('PositionAccuracy',0.1);

Call the waypoint trajectory object, path, to generate the ground-truth motion. Call the INS
simulator, ins, with the ground-truth motion to generate INS measurements.

[motion.Position,motion.Orientation,motion.Velocity] = path();
insMeas = ins(motion);

Convert the orientation returned by ins to Euler angles in degrees for visualization purposes. Plot
the full path and orientation over time.

orientationMeasurementEuler = eulerd(insMeas.Orientation,'ZYX','frame');

subplot(2,1,1)
plot(insMeas.Position(:,1),insMeas.Position(:,2));
title('Path')
xlabel('North (m)')
ylabel('East (m)')

subplot(2,1,2)
t = (0:(numSamples-1)).'/Fs;
plot(t,orientationMeasurementEuler(:,1), ...
     t,orientationMeasurementEuler(:,2), ...
     t,orientationMeasurementEuler(:,3));
title('Orientation')
legend('Yaw','Pitch','Roll')
xlabel('Time (s)')
ylabel('Rotation (degrees)')
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Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object functions, perturbations and perturb, do not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
gpsSensor | robotSensor
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interactiveRigidBodyTree
Interact with rigid body tree robot models

Description
The interactiveRigidBodyTree object creates a figure that displays a robot model using a
rigidBodyTree object and enables you to directly modify the robot configuration using an
interactive marker. The rigidBodyTree object defines the geometry of the different connected rigid
bodies in the robot model and the joint limits for these bodies.

To compute new configurations using inverse kinematics, click and drag the interactive marker in the
figure. The marker supports dragging of the center marker, linear motion along specific axes, and
rotation about each axes. You can change the end effector by right-clicking a different body and
choosing Set body as marker body.

To save the current configuration of the robot model, use the addConfiguration object function.
The StoredConfigurations property contains the saved configurations.

By default, the joint limits of the robot model are the only constraint on the robot. To add additional
constraints, use the addConstraint object function. For a list of available constraint objects, see
Robot Constraints in “Inverse Kinematics”.

Creation
Syntax
viztree = interactiveRigidBodyTree(robot)
viztree = interactiveRigidBodyTree(robot,'Frames','off')
viztree = interactiveRigidBodyTree( ___ ,Name,Value)

Description

viztree = interactiveRigidBodyTree(robot) creates an interactive rigid body tree object
and associated figure for the specified robot model. The robot argument sets the RigidBodyTree
property. To interact with the model, click and drag the interactive marker in the figure.

viztree = interactiveRigidBodyTree(robot,'Frames','off') turns off the frame axes
plotted for each joint in the robot model.

viztree = interactiveRigidBodyTree( ___ ,Name,Value) sets properties using one or more
name-value pair arguments in addition to any of the input argument combinations in previous
syntaxes. Enclose each property name in quotes. For example, 'RigidBodyTree',robot creates an
interactive rigid body tree object with the specified robot model.

Properties
RigidBodyTree — Rigid body tree robot model
rigidBodyTree object
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Rigid body tree robot model, specified as a rigidBodyTree object. The robot model defines the
geometry of the rigid bodies and the joints connecting them. To access provided robot models, use
the loadrobot function. To import models from URDF files or Simscape™ Multibody™ models, use
the importrobot function.

You can set this property when you create the object. After you create the object, this property is
read-only.

IKSolver — Inverse kinematics solver
generalizedInverseKinematics System object with default properties (default) |
generalizedInverseKinematics object

Inverse kinematics solver, specified as a generalizedInverseKinematics System object. By
default, the solver uses the Levenberg-Marquardt algorithm with a maximum number of iterations of
2. Increasing the maximum number of iterations can decrease the frame rate in the figure.

You can set this property when you create the object. After you create the object, this property is
read-only.

MarkerBodyName — Name of rigid body associated with interactive marker
viztree.RigidBodyTree.BodyNames{end} (default) | string scalar | character vector

Name of rigid body associated with interactive marker, specified as a string scalar or character
vector. By default, this property is set to the body with the highest index in the RigidBodyTree
property. To change this property using the figure, right-click a rigid body and select Set body as
marker body.
Example: "r_foot"
Data Types: char | string

MarkerPose — Current pose of interactive marker
4-by-4 homogeneous transformation matrix

This property is read-only.

Current pose of interactive marker, specified as a 4-by-4 homogeneous transformation matrix.
Data Types: double

MarkerBodyPose — Current pose of rigid body associated with interactive marker
4-by-4 homogeneous transformation matrix

This property is read-only.

Current pose of the rigid body associated with the interactive marker, specified as a 4-by-4
homogeneous transformation matrix.
Data Types: double

Constraints — Constraints on inverse kinematics solver
{} (default) | cell array of constraint objects

Constraints on inverse kinematics solver, specified as a cell array of one or more constraint objects:

• constraintAiming
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• constraintCartesianBounds
• constraintJointBounds
• constraintOrientationTarget
• constraintPoseTarget
• constraintPositionTarget

By default, the inverse kinematics solver respects only the joint limits of the RigidBodyTree property.
To add or remove the constraints on the robot model, use the addConstraint and
removeConstraints object functions respectively. Alternatively, you can assign a new cell array of
constraint objects to the property.
Example: {constraintAiming("head","ReferenceBody","right_hand")}
Data Types: cell

SolverPoseWeights — Weights on orientation and position of target pose
[1 1] (default) | two-element vector [orientation position]

Weights on orientation and position of target pose, respectively, specified as a two-element vector,
[orientation position].

To increase priority for matching a desired orientation or position, increase the corresponding weight
value.
Example: [1 4]
Data Types: double

ShowMarker — Visibility of interactive marker in figure
true or 1 (default) | false or 0

Visibility of interactive marker in figure, specified as logical 1 (true) or 0 or ( false). Set
ShowMarker to false to hide the interactive marker in the figure.
Data Types: logical

MarkerControlMethod — Type of control for interactive marker
"InverseKinematics" (default) | "JointControl"

Type of control for interactive marker, specified as "InverseKinematics" or "JointControl". By
default, the figure computes all the joint configurations of the robot by using inverse kinematics with
the end effector set to MarkerBodyName property value. To control the position of a specific joint on
the selected rigid body, set this property to "JointControl".
Data Types: char | string

MarkerScaleFactor — Relative scale of interactive marker
1 (default) | positive real number

Relative scale of interactive marker, specified as a positive positive real number. To increase or
decrease the size of the marker in the figure, adjust this property.
Data Types: double

Configuration — Current configuration of rigid body tree robot model
homeConfiguration(viztree.RigidBodyTree) (default) | n-element vector
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Current configuration of rigid body tree robot model, specified as an n-element vector. n is the
number of nonfixed joints in the RigidBodyTree property.
Example: [1 pi 0 0.5 3.156]'
Data Types: double

StoredConfigurations — Stored robot configurations
[] (default) | n-by-p matrix

Stored robot configurations, specified as an n-by-p matrix. Each column of the matrix is a stored
robot configuration. n is the number of nonfixed joints in the RigidBodyTree property. p is the
number of stored robot configurations. To add or remove stored configurations, use the
addConfiguration or removeConfigurations object functions, respectively.
Data Types: double

Object Functions
addConfiguration Store current configuration
addConstraint Add inverse kinematics constraint
removeConfigurations Remove configurations from StoredConfigurations property
removeConstraints Remove inverse kinematics constraints
showFigure Show interactive rigid body tree figure

Examples

Interactively Build and Play Back Series of Robot Configurations

Use the interactiveRigidBodyTree object to manually move around a robot in a figure. The
object uses interactive markers in the figure to track the desired poses of different rigid bodies in the
rigidBodyTree object.

Load Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot("atlas");

Visualize Robot and Save Configurations

Create an interactive tree object and associated figure, specifying the loaded robot model and its left
hand as the end effector.

viztree = interactiveRigidBodyTree(robot,"MarkerBodyName","l_hand");
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Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

Programmatically set the current configuration. Assign a vector of length equal to the number of
nonfixed joints in the RigidBodyTree to the Configuration property.

currConfig = homeConfiguration(viztree.RigidBodyTree);
currConfig(1:10) = [ 0.2201 -0.1319 0.2278 -0.3415 0.4996 ...
                     0.0747 0.0377 0.0718 -0.8117 -0.0427]';
viztree.Configuration = currConfig;
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Save the current robot configuration in the StoredConfigurations property.

addConfiguration(viztree)

To switch the end effector to a different rigid body, right-click the desired body in the figure and
select Set body as marker body. Use this process to select the right hand frame.
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You can also set the MarkerBodyName property to the specific body name.

viztree.MarkerBodyName = "r_hand";
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Move the right hand to a new position. Set the configuration programmatically. The marker moves to
the new position of the end effector.

currConfig(1:18) = [-0.1350 -0.1498 -0.0167 -0.3415 0.4996 0.0747
                     0.0377 0.0718 -0.8117 -0.0427 0 0.4349 
                    -0.5738 0.0563 -0.0095 0.0518 0.8762 -0.0895]';
                
viztree.Configuration = currConfig;
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Save the current configuration.

addConfiguration(viztree)

Add Constraints

By default, the robot model respects only the joint limits of the rigidBodyJoint objects associated
with the RigidBodyTree property. To add constraints, generate Robot Constraint objects and
specify them as a cell array in the Constraints property. To see a list of robotic constraints, see
“Inverse Kinematics”. Specify a pose target for the pelvis to keep it fixed to the home position.
Specify a position target for the right foot to be raised in front front and above its current position.

fixedWaist = constraintPoseTarget("pelvis");
raiseRightLeg = constraintPositionTarget("r_foot","TargetPosition",[1 0 0.5]);

Apply these constraints to the interactive rigid body tree object as a cell array. The right leg in the
resulting figure changes position.

viztree.Constraints = {fixedWaist raiseRightLeg};                               
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Notice the change in position of the right leg. Save this configuration as well.

addConfiguration(viztree)

Play Back Configurations

To play back configurations, iterate through the stored configurations index and set the current
configuration equal to the stored configuration column vector at each iteration. Because
configurations are stored as column vectors, use the second dimension of the matrix.

for i = 1:size(viztree.StoredConfigurations,2)
    viztree.Configuration = viztree.StoredConfigurations(:,i);
    pause(0.5)
end
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Generate Robot Trajectory Using Interactive Rigid Body Tree Model

Use the interactiveRigidBodyTree object to visualize a robot model and interactively create
waypoints and use them to generate a smooth trajectory using cubicpolytraj. For more
information, see the interactiveRigidBodyTree object and cubicpolytraj function.

Load the Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot('abbIrb120'); 

Visualize Robot and Save Configurations

Create an interactive tree object using the interactiveRigidBodyTree function. By default, the
interactive marker is set to the body with the highest index in the RigidBodyTree property. To
change this property using the figure, right-click a rigid body and select Set body as marker body.
Alternatively, MarkerBodyName property for the interactiveRigidBodyTree can be set using
name-value pairs.

iRBT = interactiveRigidBodyTree(robot); 
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Interactively Add Configurations

Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

When the robot is in a desired configuration use the addConfiguration object function to add the
configuration to the StoredConfiguration property of the object.

In this example, 6 waypoints are created using the interactive marker and addConfiguration
object function. They are saved in wayPoints.mat. Stored configurations can be accessed using
iRBT.StoredConfigurations.

load("wayPts.mat");

Generate Smooth Trajectory Using the Waypoints

Use the cubicpolytraj function to generate smooth trajectory between the waypoints. Define time
points that correspond to each waypoint. Define the time vector for generating the trajectory. The
cubicpolyTraj function generates a configuration for each timestep in the timevector tvec.

iRBT.StoredConfigurations = wayPts ;          % Waypoints 
tpts = [0 2 4 6 8 10];                        % Time Points 
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tvec = 0:0.1:10;                              % Time Vector 
[q,qd,qdd,pp] = cubicpolytraj(iRBT.StoredConfigurations,tpts,tvec); 

Visualize Robot Motion on the Trajectory

Define the simulation frequency using a rateControl object. Use the showFigure function to
visualize the robot model and use a for loop to play all the configurations of the robot.

r = rateControl(10);
iRBT.ShowMarker = false;  % Hide the marker 

showFigure(iRBT)

for i = 1:size(q',1)
    iRBT.Configuration = q(:,i);
    waitfor(r);
end     

Limitations
• If the interactiveRigidBodyTree object is deleted while the figure is still open, the

interactivity of the figure is disabled and the title of the figure is updated.
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Tips
• To maximize performance when visualizing complex robot models with complex meshes, ensure

you enable hardware-accelerated OpenGL. By default, MATLAB uses hardware-accelerated
OpenGL if your graphics hardware supports it. For more information, see the opengl function.

Version History
Introduced in R2020a

See Also
Functions
loadrobot | importrobot | homeConfiguration

Objects
rigidBodyTree | rigidBody | rigidBodyJoint | generalizedInverseKinematics

Topics
“Rigid Body Tree Robot Model”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
“Trajectory Control Modeling with Inverse Kinematics”
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inverseKinematics
Create inverse kinematic solver

Description
The inverseKinematics System object creates an inverse kinematic (IK) solver to calculate joint
configurations for a desired end-effector pose based on a specified rigid body tree model. Create a
rigid body tree model for your robot using the rigidBodyTree class. This model defines all the joint
constraints that the solver enforces. If a solution is possible, the joint limits specified in the robot
model are obeyed.

To specify more constraints besides the end-effector pose, including aiming constraints, position
bounds, or orientation targets, consider using generalizedInverseKinematics. This object
allows you to compute multiconstraint IK solutions.

For closed-form analytical IK solutions, see analyticalInverseKinematics.

To compute joint configurations for a desired end-effector pose:

1 Create the inverseKinematics object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
ik = inverseKinematics
ik = inverseKinematics(Name,Value)

Description

ik = inverseKinematics creates an inverse kinematic solver. To use the solver, specify a rigid
body tree model in the RigidBodyTree property.

ik = inverseKinematics(Name,Value) creates an inverse kinematic solver with additional
options specified by one or more Name,Value pair arguments. Name is a property name and Value is
the corresponding value. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

RigidBodyTree — Rigid body tree model
rigidBodyTree object

Rigid body tree model, specified as a rigidBodyTree object. If you modify your rigid body tree
model, reassign the rigid body tree to this property. For example:

Create IK solver and specify the rigid body tree.

ik = inverseKinematics('RigidBodyTree',rigidbodytree)

Modify the rigid body tree model.

addBody(rigidbodytree,rigidBody('body1'),'base')

Reassign the rigid body tree to the IK solver. If the solver or the step function is called before
modifying the rigid body tree model, use release to allow the property to be changed.

ik.RigidBodyTree = rigidbodytree;

SolverAlgorithm — Algorithm for solving inverse kinematics
'BFGSGradientProjection' (default) | 'LevenbergMarquardt'

Algorithm for solving inverse kinematics, specified as either 'BFGSGradientProjection' or
'LevenbergMarquardt'. For details of each algorithm, see “Inverse Kinematics Algorithms”.

SolverParameters — Parameters associated with algorithm
structure

Parameters associated with the specified algorithm, specified as a structure. The fields in the
structure are specific to the algorithm. See “Solver Parameters”.

Usage

Syntax
[configSol,solInfo] = ik(endeffector,pose,weights,initialguess)

Description

[configSol,solInfo] = ik(endeffector,pose,weights,initialguess) finds a joint
configuration that achieves the specified end-effector pose. Specify an initial guess for the
configuration and your desired weights on the tolerances for the six components of pose. Solution
information related to execution of the algorithm, solInfo, is returned with the joint configuration
solution, configSol.

Input Arguments

endeffector — End-effector name
character vector

End-effector name, specified as a character vector. The end effector must be a body on the
rigidBodyTree object specified in the inverseKinematics System object.
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pose — End-effector pose
4-by-4 homogeneous transform

End-effector pose, specified as a 4-by-4 homogeneous transform. This transform defines the desired
position and orientation of the rigid body specified in the endeffector property.

weights — Weight for pose tolerances
six-element vector

Weight for pose tolerances, specified as a six-element vector. The first three elements correspond to
the weights on the error in orientation for the desired pose. The last three elements correspond to
the weights on the error in xyz position for the desired pose.

initialguess — Initial guess of robot configuration
structure array | vector

Initial guess of robot configuration, specified as a structure array or vector. Use this initial guess to
help guide the solver to a desired robot configuration. The solution is not guaranteed to be close to
this initial guess.

To use the vector form, set the DataFormat property of the object assigned in the RigidBodyTree
property to either 'row' or 'column' .

Output Arguments

configSol — Robot configuration solution
structure array | vector

Robot configuration, returned as a structure array. The structure array contains these fields:

• JointName — Character vector for the name of the joint specified in the RigidBodyTree robot
model

• JointPosition — Position of the corresponding joint

This joint configuration is the computed solution that achieves the desired end-effector pose within
the solution tolerance.

Note For revolute joints, if the joint limits exceed a range of 2*pi, where joint position wrapping
occurs, then the returned joint position is the one closest to the joint's lower bound.

To use the vector form, set the DataFormat property of the object assigned in the RigidBodyTree
property to either 'row' or 'column' .

solInfo — Solution information
structure

Solution information, returned as a structure. The solution information structure contains these
fields:

• Iterations — Number of iterations run by the algorithm.
• NumRandomRestarts — Number of random restarts because algorithm got stuck in a local

minimum.
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• PoseErrorNorm — The magnitude of the pose error for the solution compared to the desired end-
effector pose.

• ExitFlag — Code that gives more details on the algorithm execution and what caused it to
return. For the exit flags of each algorithm type, see “Exit Flags”.

• Status — Character vector describing whether the solution is within the tolerance ('success')
or the best possible solution the algorithm could find ('best available').

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Joint Positions to Achieve End-Effector Position

Generate joint positions for a robot model to achieve a desired end-effector position. The
inverseKinematics system object uses inverse kinematic algorithms to solve for valid joint
positions.

Load example robots. The puma1 robot is a rigidBodyTree model of a six-axis robot arm with six
revolute joints.

load exampleRobots.mat
showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Generate a random configuration. Get the transformation from the end effector (L6) to the base for
that random configuration. Use this transform as a goal pose of the end effector. Show this
configuration.

randConfig = puma1.randomConfiguration;
tform = getTransform(puma1,randConfig,'L6','base');
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show(puma1,randConfig);

Create an inverseKinematics object for the puma1 model. Specify weights for the different
components of the pose. Use a lower magnitude weight for the orientation angles than the position
components. Use the home configuration of the robot as an initial guess.

ik = inverseKinematics('RigidBodyTree',puma1);
weights = [0.25 0.25 0.25 1 1 1];
initialguess = puma1.homeConfiguration;

Calculate the joint positions using the ik object.

[configSoln,solnInfo] = ik('L6',tform,weights,initialguess);

Show the newly generated solution configuration. The solution is a slightly different joint
configuration that achieves the same end-effector position. Multiple calls to the ik object can give
similar or very different joint configurations.

show(puma1,configSoln);
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Version History
Introduced in R2016b

inverseKinematics was renamed
Behavior change in future release

The inverseKinematics object was renamed from robotics.InverseKinematics. Use
inverseKinematics for all object creation.

References
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[2] Bertsekas, Dimitri P. Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.
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[5] Sugihara, Tomomichi. "Solvability-Unconcerned Inverse Kinematics by the Levenberg–Marquardt
Method." IEEE Transactions on Robotics Vol. 27, No. 5 (2011): 984–91. doi:10.1109/
tro.2011.2148230.

[6] Zhao, Jianmin, and Norman I. Badler. "Inverse Kinematics Positioning Using Nonlinear
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

When using code generation, you must specify the RigidBodyTree property to define the robot on
construction of the object. For example:

ik = inverseKinematics('RigidBodyTree',robotModel);

You also cannot change the SolverAlgorithm property after creation. To specify the solver
algorithm on creation, use:

ik = inverseKinematics('RigidBodyTree',robotModel,...
        'SolverAlgorithm','LevenbergMarquardt');

See Also
analyticalInverseKinematics | rigidBodyJoint | rigidBody | rigidBodyTree |
generalizedInverseKinematics

Topics
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Inverse Kinematics Algorithms”
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jointSpaceMotionModel
Model rigid body tree motion given joint-space inputs

Description
The jointSpaceMotionModel object models the closed-loop joint-space motion of a manipulator
robot, specified as a rigidBodyTree object. The motion model behavior is defined by the
MotionType property.

For more details about the equations of motion, see “Joint-Space Motion Model”.

Creation

Syntax
motionModel = jointSpaceMotionModel
motionModel = jointSpaceMotionModel("RigidBodyTree",tree)
motionModel = jointSpaceMotionModel(Name,Value)

Description

motionModel = jointSpaceMotionModel creates a motion model for a default two-joint
manipulator.

motionModel = jointSpaceMotionModel("RigidBodyTree",tree) creates a motion model
for the specified rigidBodyTree object.

motionModel = jointSpaceMotionModel(Name,Value) sets additional properties specified as
name-value pairs. You can specify multiple properties in any order.

Properties
RigidBodyTree — Rigid body tree robot model
rigidBodyTree object

Rigid body tree robot model, specified as a rigidBodyTree object that defines the inertial and
kinematic properties of the manipulator.

NaturalFrequency — Natural frequency of error dynamics
[10 10] (default) | n-element vector | scalar

Natural frequency of error dynamics, specified as a scalar or n-element vector in Hz, where n is the
number of nonfixed joints in the associated rigidBodyTree object in the RigidBodyTree property.

Dependencies

To use this property, set the MotionType property to "ComputedTorqueControl" or
"IndependentJointMotion".
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DampingRatio — Damping ratio of error dynamics
[1 1] (default) | n-element vector | scalar

Damping ratio of the second-order error dynamics, specified as a scalar or n-element vector of real
values, where n is the number of nonfixed joints in the associated rigidBodyTree object in the
RigidBodyTree property. If a scalar is specified, then DampingRatio becomes an n-element vector of
value s, where s is the specified scalar.

Dependencies

To use this property, set the MotionType property to "ComputedTorqueControl" or
"IndependentJointMotion".

Kp — Proportional gain for PD control
100*eye(2) (default) | n-by-n | scalar

Proportional gain for proportional-derivative (PD) control, specified as a scalar or n-by-n matrix,
where n is the number of nonfixed joints in the associated rigidBodyTree object in the
RigidBodyTree property. You must set the MotionType property to "PDControl". If a scalar is
specified, then Kp becomes s*eye(n), where s is the specified scalar.

Dependencies

To use this property, set the MotionType property to "PDControl".

Kd — Derivative gain for PD control
10*eye(2) (default) | n-by-n | scalar

Derivative gain for PD control, specified as a scalar or n-by-n matrix, where n in the number of
nonfixed joints in the rigidBodyTree object in the RigidBodyTree property. If a scalar is specified,
then Kp becomes s*eye(n), where s is the specified scalar.

Dependencies

To use this property, set the MotionType property to "PDControl".

MotionType — Type of motion computed by the motion model
"ComputedTorqueControl" (default) | "IndependentJointMotion" | "PDControl"

Type of motion, specified as a string scalar or character vector that defines the closed-loop joint-
space behavior that the object models. Options are:

• "ComputedTorqueControl" — Compensates for full-body dynamics and assigns the error
dynamics specified in the NaturalFrequency and DampingRatio properties.

• "IndependentJointMotion" — Models each joint as an independent second-order system using
the error dynamics specified by the NaturalFrequency and DampingRatio properties.

• "PDControl" — Uses proportional-derivative control on the joints based on the specified Kp and
Kd properties.

Object Functions
derivative Time derivative of manipulator model states
updateErrorDynamicsFromStep Update values of NaturalFrequency and DampingRatio properties

given desired step response
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Examples

Create Joint-Space Motion Model

This example shows how to create and use a jointSpaceMotionModel object for a manipulator
robot in joint-space.

Create the Robot

robot = loadrobot("kinovaGen3","DataFormat","column","Gravity",[0 0 -9.81]);

Set Up the Simulation

Set the timespan to be 1 s with a timestep size of 0.01 s. Set the initial state to be the robots, home
configuration with a velocity of zero.

tspan = 0:0.01:1;
initialState = [homeConfiguration(robot); zeros(7,1)];

Define the a reference state with a target position, zero velocity, and zero acceleration.

targetState = [pi/4; pi/3; pi/2; -pi/3; pi/4; -pi/4; 3*pi/4; zeros(7,1); zeros(7,1)];

Create the Motion Model

Model the system with computed torque control and error dynamics defined by a moderately fast step
response with 5% overshoot.

motionModel = jointSpaceMotionModel("RigidBodyTree",robot);
updateErrorDynamicsFromStep(motionModel,.3,.05);

Simulate the Robot

Use the derivative function of the model as the input to the ode45 solver to simulate the behavior
over 1 second.

[t,robotState] = ode45(@(t,state)derivative(motionModel,state,targetState),tspan,initialState);

Plot the Response

Plot the positions of all the joints actuating to their target state. Joints with a higher displacement
between the starting position and the target position actuate to the target at a faster rate than those
with a lower displacement. This leads to an overshoot, but all of the joints have the same settling
time.

figure
plot(t,robotState(:,1:motionModel.NumJoints));
hold all;
plot(t,targetState(1:motionModel.NumJoints)*ones(1,length(t)),"--");
title("Joint Position (Solid) vs Reference (Dashed)");
xlabel("Time (s)")
ylabel("Position (rad)");
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Version History
Introduced in R2019b

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Upper Saddle River, NJ: Pearson

Education, 2005.

[2] Spong, Mark W., Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control.
Hoboken, NJ: Wiley, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
taskSpaceMotionModel

Blocks
Joint Space Motion Model
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Functions
derivative | updateErrorDynamicsFromStep

Topics
“Simulate Joint-Space Trajectory Tracking in MATLAB”
“Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator”

1 Classes

1-222



lidarScan
Create object for storing 2-D lidar scan

Description
A lidarScan object contains data for a single 2-D lidar (light detection and ranging) scan. The lidar
scan is a laser scan for a 2-D plane with distances (Ranges) measured from the sensor to obstacles in
the environment at specific angles (Angles). Use this laser scan object as an input to other robotics
algorithms such as matchScans, controllerVFH, or monteCarloLocalization.

Creation

Syntax
scan = lidarScan(ranges,angles)
scan = lidarScan(cart)

Description

scan = lidarScan(ranges,angles) creates a lidarScan object from the ranges and angles,
that represent the data collected from a lidar sensor. The ranges and angles inputs are vectors of
the same length and are set directly to the Ranges and Angles properties.

scan = lidarScan(cart) creates a lidarScan object using the input Cartesian coordinates as an
n-by-2 matrix. The Cartesian property is set directly from this input.

scan = lidarScan(scanMsg) creates a lidarScan object from a LaserScan ROS message
object.

Properties
Ranges — Range readings from lidar in meters
vector

Range readings from lidar, specified as a vector in meters. This vector is the same length as Angles,
and the vector elements are measured in meters.
Data Types: single | double

Angles — Angle of readings from lidar in radians
vector

Angle of range readings from lidar, specified as a vector. This vector is the same length as Ranges,
and the vector elements are measured in radians. Angles are measured counter-clockwise around the
positive z-axis.
Data Types: single | double
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Cartesian — Cartesian coordinates of lidar readings in meters
[x y] matrix

Cartesian coordinates of lidar readings, returned as an [x y] matrix. In the lidar coordinate frame,
positive x is forward and positive y is to the left.
Data Types: single | double

Count — Number of lidar readings
scalar

Number of lidar readings, returned as a scalar. This scalar is also equal to the length of the Ranges
and Angles vectors or the number of rows in Cartesian.
Data Types: double

Object Functions
plot Display laser or lidar scan readings
removeInvalidData Remove invalid range and angle data
transformScan Transform laser scan based on relative pose

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')

 lidarScan

1-225



Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Version History
Introduced in R2019b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Lidar scans require a limited size in code generation. The lidar scans are limited to 4000 points
(range and angles) as a maximum.

See Also
transformScan
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manipulatorCollisionBodyValidator
Validate states for collision bodies of rigid body tree

Description
The manipulatorCollisionBodyValidator object performs state and motion validity checks for
a rigid body tree robot model. To check if the collision bodies collide either with other bodies (self-
collisions) or the environment, use the isStateValid object function. To check if a motion between
two states is valid, use the isMotionValid object function.

Creation

Syntax
manipSV = manipulatorCollisionBodyValidator
manipSV = manipulatorCollisionBodyValidator(ss)
manipSV = manipulatorCollisionBodyValidator(ss,Name=Value)

Description

manipSV = manipulatorCollisionBodyValidator creates a state validator with default values
for a manipulatorStateSpace object.

manipSV = manipulatorCollisionBodyValidator(ss) creates a state validator for a
manipulatorStateSpace object that represents a robot model state space and contains collision
bodies for rigid body elements. Specify ss as a manipulatorStateSpace object.

manipSV = manipulatorCollisionBodyValidator(ss,Name=Value) specifies “Properties” on
page 1-228 as name-value arguments

Properties
ValidationDistance — Distance resolution for motion validation
0.1 (default) | positive scalar in meters

Distance resolution for motion validation, specified as a positive scalar. The validation distance
determines the number of interpolated states between states specified to the isMotionValid object
function. The object function validates each interpolated state by checking for collisions with the
robot and the environment.
Data Types: double

IgnoreSelfCollision — Ignore self collisions toggle
0 or false (default) | 1 or true

Ignore self collisions toggle, specified as a logical. If this property is set to true, the
isMotionValid object function skips checking between bodies for collisions and only compares the
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bodies to the environment. Not checking for self-collisions can improve the speed of the planning
phase, but your state space should contain joint limits that ensure self-collisions are not possible.
Data Types: logical

Environment — Collision objects in robot environment
{} (default) | cell array of collision body objects

Collision objects in the robot environment, specified as a cell array of collision objects of these types:

• collisionBox
• collisionCylinder
• collisionMesh
• collisionSphere

box = collisionBox(0.1,0.1,0.5); % XYZ Lengths
box.Pose = trvec2tform([0.2 0.2 0.5]); % XYZ Position
sphere = collisionSphere(0.25); % Radius
sphere.Pose = trvec2tform([-0.2 -0.2 0.5]); % XYZ Position
env = {box sphere};
manipSS = manipulatorCollisionBodyValidator(ss,Environment=env);

Data Types: logical

StateSpace — Manipulator state space
manipulatorStateSpace object

Manipulator state space, specified as a manipulatorStateSpace object, which is a subclass of
nav.StateSpace.

SkippedSelfCollisions — Body pairs skipped for checking self-collisions
"parent" (default) | "adjacent"

Body pairs skipped for checking self-collisions, specified as either "parent" or "adjacent":

• "parent" — Skip collision checking between child and parent bodies.
• "adjacent" — Skip collision checking between bodies on adjacent indices.

See “Change Self-Collision Checking Behavior” on page 3-331 for more information.
Data Types: char | string

Object Functions
isStateValid Check if state is valid
isMotionValid Check if path between states is valid

Examples

Validate State and Motion Manipulator State Space

Generate states to form a path, validate motion between states, and check for self-collisions and
environmental collisions with objects in your world. The manipulatorStateSpace object
represents the joint configuration space of your rigid body tree robot model, and can sample states,
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calculate distances, and enforce state bounds. The manipulatorCollisionBodyValidator object
validates the state and motion based on the collision bodies in your robot model and any obstacles in
your environment.

Load Robot Model

Use the loadrobot function to access predefined robot models. This example uses the Quanser
QArm™ robot and joint configurations are specified as row vectors.

robot = loadrobot("quanserQArm",DataFormat="row");
figure(Visible="on")
show(robot);
xlim([-0.5 0.5])
ylim([-0.5 0.5])
zlim([-0.25 0.75])
hold on

Configure State Space and State Validation

Create the state space and state validator from the robot model.

ss = manipulatorStateSpace(robot);
sv = manipulatorCollisionBodyValidator(ss,SkippedSelfCollisions="parent");

Set the validation distance to 0.05, which is based on the distance normal between two states. You
can configure the validator to ignore self collisions to improve the speed of validation, but must
consider whether your robot model has the proper joint limit settings set to ensure it does not collide
with itself.
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sv.ValidationDistance = 0.05;
sv.IgnoreSelfCollision = true;

Place collision objects in the robot environment. Set the Environment property of the collision
validator object using a cell array of objects.

box = collisionBox(0.1,0.1,0.5); % XYZ Lengths
box.Pose = trvec2tform([0.2 0.2 0.5]); % XYZ Position
sphere = collisionSphere(0.25); % Radius
sphere.Pose = trvec2tform([-0.2 -0.2 0.5]); % XYZ Position
env = {box sphere};
sv.Environment = env;

Visualize the environment.

for i = 1:length(env)
    show(env{i})
end
view(60,10)

Plan Path

Start with the home configuration as the first point on the path.

rng(0); % Repeatable results
start = homeConfiguration(robot);
path = start;
idx = 1;
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Plan a path using these steps, in a loop:

• Sample a nearby goal configuration, using the Gaussian distribution, by specifying the standard
deviation for each joint angle.

• Check if the sampled goal state is valid.
• If the sampled goal state is valid, check if the motion between states is valid and, if so, add it to

the path.

for i = 2:25
    goal = sampleGaussian(ss,start,0.25*ones(4,1));
    validState = isStateValid(sv,goal);
    
    if validState % If state is valid, check motion between states.
        [validMotion,~] = isMotionValid(sv,path(idx,:),goal);

        if validMotion % If motion is valid, add to path.
            path = [path; goal];
            idx = idx + 1;
        end
    end
end

Visualize Path

After generating the path of valid motions, visualize the robot motion. Because you sampled random
states near the home configuration, you should see the arm move around that initial configuration.

To visualize the path of the end effector in 3-D, get the transformation, relative to the base world
frame at each point. Store the points as an xyz translation vector. Plot the path of the end effector.

eePose = nan(3,size(path,1));

for i = 1:size(path,1)
    show(robot,path(i,:),PreservePlot=false);
    eePos(i,:) = tform2trvec(getTransform(robot,path(i,:),"END-EFFECTOR")); % XYZ translation vector
    plot3(eePos(:,1),eePos(:,2),eePos(:,3),"-b",LineWidth=2)
    drawnow
end
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Version History
Introduced in R2021b

Alter rigid body tree self-collision checking behavior change and new default self-collision
checking behavior
Behavior change in future release

You can now specify self-collision checking behavior for a rigid body tree robot model by using the
SkippedSelfCollisions property. Specify SkippedSelfCollisions as "parent" or
"adjacent":

• "parent" — Collision checking ignores self-collisions between parent and child rigid bodies.
• "adjacent" — Collision checking ignores self -collisions between rigid bodies of adjacent indices.

As of R2022b, the default behavior of collision checking is to ignore self-collisions between parent
and child rigid bodies. In previous releases, the default behavior of self-collision checking was to
ignore self-collisions between adjacent rigid bodies. To instead ignore self-collisions between rigid
bodies of adjacent indices, specify SkippedSelfCollisions as "adjacent".

See “Change Self-Collision Checking Behavior” on page 3-331 for more information.
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See Also
Objects
rigidBodyTree | manipulatorStateSpace | workspaceGoalRegion | manipulatorRRT

Functions
isStateValid | isMotionValid | sampleUniform | sampleGaussian | interpolate |
distance | enforceStateBounds
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manipulatorRRT
Plan motion for rigid body tree using bidirectional RRT

Description
The manipulatorRRT object is a single-query planner for manipulator arms that uses the
bidirectional rapidly exploring random trees (RRT) algorithm with an optional connect heuristic to
potentially increase speed.

The bidirectional RRT planner creates two trees with root nodes at the specified start and goal
configurations. To extend each tree, the planner generates a random configuration and, if valid, takes
a step from the nearest node based on the MaxConnectionDistance property. After each extension,
the planner attempts to connect between the two trees using the new extension and the closest node
on the opposite tree. Invalid configurations or connections that collide with the environment are not
added to the tree.

For a greedier search, enabling the EnableConnectHeuristic property disables the limit on the
MaxConnectionDistance property when connecting between the two trees.

Setting the EnableConnectHueristic property to false limits the extension distance when
connecting between the two trees to the value of the MaxConnectionDistance property.
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The object uses a rigidBodyTree robot model to generate the random configurations and
intermediate states between nodes. Collision objects are specified in the robot model to validate the
configurations and check for collisions with the environment or the robot itself.

To plan a path between a start and a goal configuration, use the plan object function. After planning,
you can interpolate states along the path using the interpolate object function. To attempt to
shorten the path by trimming edges, use the shorten object function.

To specify a region to sample end-effector poses near the goal configuration, create a
workspaceGoalRegion object and specify it as the goalRegion input to the plan object function.
To change the probability of sampling additional goal configurations, specify the
WorkspaceGoalRegionBias property.

For more information about the computational complexity, see Planning Complexity on page 1-244.

Creation

Syntax
rrt = manipulatorRRT(robotRBT,{})
rrt = manipulatorRRT(robotRBT,collisionObjects)

Description

rrt = manipulatorRRT(robotRBT,{}) creates a bidirectional RRT planner for the specified
rigidBodyTree robot model. The empty cell array indicates that there are no obstacles in the
environment.

rrt = manipulatorRRT(robotRBT,collisionObjects) creates a planner for a robot model
with collision objects placed in the environment. The planner checks for collisions with these objects.
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Properties
MaxConnectionDistance — Maximum length between planned configurations
0.1 (default) | positive scalar

Maximum length between planned configurations, specified as a positive scalar. The object computes
the length of the motion as the Euclidean distance between the two joint configurations. During the
extension process, this is the maximum distance a configuration can change.

When revolute joints have infinite limits, differences between two joint positions are calculated using
the angdiff function.

If the EnableConnectheuristic property is set to true, the object ignores this distance when
connecting the two trees during the connect stage.
Data Types: double

ValidationDistance — Distance resolution for validating motion between configurations
0.01 (default) | positive scalar

Distance resolution for validating motion between configurations, specified as a positive scalar. The
validation distance determines the number of interpolated nodes between two adjacent nodes in the
tree. The object validates each interpolated node by checking for collisions with the robot and the
environment.
Data Types: double

MaxIterations — Maximum number of random configurations generated
10000 (default) | positive integer

Maximum number of random configurations generated, specified as a positive integer.
Data Types: double

EnableConnectHeuristic — Directly join trees during connect phase
true or 1 (default) | false or 0

Directly join trees during the connect phase of the planner, specified as a logical 1 (true) or 0
(false). Setting this property to true causes the object to ignore the MaxConnectionDistance
property when attempting to connect the two trees together.
Data Types: logical

WorkspaceGoalRegionBias — Probability to sample additional goal state from workspace
goal region
0.50 (default) | positive value in the range [0,1)

Probability to sample a goal state from the workspace goal region, specified as a positive value in the
range [0,1). The bias defines the probability to add additional goal states to the tree from the
workspaceGoalRegion object. When this value is set to zero, the workspaceGoalRegion object
still samples a single goal for the planner to plan to.

Increasing this value increases the likelihood of reaching a goal state in the goal region, but may lead
to longer planning times because each new goal state adds additional complexity for planning.
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Dependency

You must use the goalRegion input when calling the plan object function.
Data Types: double

IgnoreSelfCollision — Ignore self collisions during planning
0 or false (default) | 1 or true

Ignore self collisions during planning, specified as a logical. If this property is set to true, the plan
function skips checking between bodies for collisions and only compares the bodies to the
environment. By not checking for self-collisions, you may improve the speed of the planning phase.
Data Types: logical

SkippedSelfCollisions — Body pairs skipped for checking self-collisions
"parent" (default) | "adjacent"

Body pairs skipped for checking self-collisions, specified as either "parent" or "adjacent":

• "parent" — Skip collision checking between child and parent bodies.
• "adjacent" — Skip collision checking between bodies on adjacent indices.

See “Change Self-Collision Checking Behavior” on page 3-331 for more information.
Data Types: char | string

Object Functions
plan Plan path using RRT for manipulators
interpolate Interpolate states along path from RRT
shorten Trim edges to shorten path from RRT

Examples

Plan Path for Manipulator Robot Using RRT

Use the manipulatorRRT object to plan a path for a rigid body tree robot model in an environment
with obstacles. Visualize the planned path with interpolated states.

Load a robot model into the workspace. Use the KUKA LBR iiwa© manipulator arm.

robot = loadrobot("kukaIiwa14","DataFormat","row");

Generate the environment for the robot. Create collision objects and specify their poses relative to
the robot base. Visualize the environment.

env = {collisionBox(0.5, 0.5, 0.05) collisionSphere(0.3)};
env{1}.Pose(3, end) = -0.05;
env{2}.Pose(1:3, end) = [0.1 0.2 0.8];

show(robot);
hold on
show(env{1})
show(env{2})
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Create the RRT planner for the robot model.

rrt = manipulatorRRT(robot,env);
rrt.SkippedSelfCollisions = "parent";

Specify a start and a goal configuration.

startConfig = [0.08 -0.65 0.05 0.02 0.04 0.49 0.04];
goalConfig =  [2.97 -1.05 0.05 0.02 0.04 0.49 0.04];

Plan the path. Due to the randomness of the RRT algorithm, set the rng seed for repeatability.

rng(0)
path = plan(rrt,startConfig,goalConfig);

Visualize the path. To add more intermediate states, interpolate the path. By default, the
interpolate object function uses the value of ValidationDistance property to determine the
number of intermediate states. The for loop shows every 20th element of the interpolated path.

interpPath = interpolate(rrt,path);
clf
for i = 1:20:size(interpPath,1)
    show(robot,interpPath(i,:));
    hold on
end
show(env{1})
show(env{2})
hold off
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Plan Path To A Workspace Goal Region

Specify a goal region in your workspace and plan a path within those bounds. The
workspaceGoalRegion object defines the bounds on the XYZ-position and ZYX Euler orientation of
the robot end effector. The manipulatorRRT object plans a path based on that goal region and
samples random poses within the bounds.

Load an existing robot model as a rigidBodyTree object.

robot = loadrobot("kinovaGen3", "DataFormat", "row");
ax = show(robot);
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Create Path Planner

Create a rapidly-exploring random tree (RRT) path planner for the robot. This example uses an empty
environment, but this workflow also works well with cluttered environments. You can add collision
objects to the environment like the collisionBox or collisionMesh object.

planner = manipulatorRRT(robot,{});
planner.SkippedSelfCollisions="parent";

Define Goal Region

Create a workspace goal region using the end-effector body name of the robot.

Define the goal region parameters for your workspace. The goal region includes a reference pose,
XYZ-position bounds, and orientation limits on the ZYX Euler angles. This example specifies bounds
on the XY-plane in meters and allows rotation about the Z-axis in radians.

goalRegion = workspaceGoalRegion(robot.BodyNames{end}); 
goalRegion.ReferencePose = trvec2tform([0.5 0.5 0.2]);
goalRegion.Bounds(1, :) = [-0.2 0.2];    % X Bounds
goalRegion.Bounds(2, :) = [-0.2 0.2];    % Y Bounds
goalRegion.Bounds(4, :) = [-pi/2 pi/2];  % Rotation about the Z-axis

You can also apply a fixed offset to all poses sampled within the region. This offset can account for
grasping tools or variations in dimensions within your workspace. For this example, apply a fixed
transformation that places the end effector 5 cm above the workspace.
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goalRegion.EndEffectorOffsetPose = trvec2tform([0 0 0.05]);
hold on
show(goalRegion);

Plan Path To Goal Region

Plan a path to the goal region from the robot's home configuration. Due to the randomness in the RRT
algorithm, this example sets the rng seed to ensure repeatable results.

rng(0)
path = plan(planner,homeConfiguration(robot),goalRegion);

Show the robot executing the path. To visualize a more realistic path, interpolate points between path
configurations.

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot,interpConfigurations(i,:),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1],...
        'CameraViewAngle',5)
  
    drawnow
end
hold off
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Adjust End-effector Pose

Notice that the robot arm approaches the workspace from the bottom. To flip the orientation of the
final position, add a pi rotation to the Y-axis for the reference pose.

goalRegion.EndEffectorOffsetPose = ... 
    goalRegion.EndEffectorOffsetPose*eul2tform([0 pi 0],"ZYX");

Replan the path and visualize the robot motion again. The robot now approaches from the top.

hold on
show(goalRegion);
path = plan(planner,homeConfiguration(robot),goalRegion);

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot, interpConfigurations(i, :),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1])
    drawnow;
end
hold off
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Tips
Planning Complexity

• When planning the motion between nodes in the tree, a set of configurations are generated and
validated. This computation time of the planner is proportional to the number of configurations
generated. The number of configurations between nodes is controlled by the ratio of the
MaxConnectionDistance and ValidationDistance properties. To improve planning time, consider
increasing the validation distance or decreasing the max connection distance.

• Validating each configuration has a complexity of O(mn+m2), where m is the number of collision
bodies in the rigidBodyTree object and n is the number of collision objects in worldObjects.
Using large numbers of meshes to represent your robot or environment increases the time for
validating each configuration.

Infinite Joint Limits

• If your rigidBodyTree robot model has joint limits that have infinite range (e.g. revolute joint
with limits of [-Inf Inf]), the manipulatorRRT object uses limits of [-1e10 1e10] to
perform uniform random sampling in the joint limits.

Version History
Introduced in R2020b
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Alter rigid body tree self-collision checking behavior change and new default self-collision
checking behavior
Behavior change in future release

You can now specify self-collision checking behavior for a rigid body tree robot model by using the
SkippedSelfCollisions property. Specify SkippedSelfCollisions as "parent" or
"adjacent":

• "parent" — Collision checking ignores self-collisions between parent and child rigid bodies.
• "adjacent" — Collision checking ignores self -collisions between rigid bodies of adjacent indices.

As of R2022b, the default behavior of collision checking is to ignore self-collisions between parent
and child rigid bodies. In previous releases, the default behavior of self-collision checking was to
ignore self-collisions between adjacent rigid bodies. To instead ignore self-collisions between rigid
bodies of adjacent indices, specify SkippedSelfCollisions as "adjacent".

See “Change Self-Collision Checking Behavior” on page 3-331 for more information.

References
[1] Kuffner, J. J., and S. M. LaValle. “RRT-Connect: An Efficient Approach to Single-Query Path

Planning.” In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 2:995–1001. San
Francisco, CA, USA: IEEE, 2000. https://doi:10.1109/ROBOT.2000.844730.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
rigidBodyTree | interactiveRigidBodyTree | analyticalInverseKinematics

Functions
plan | interpolate | shorten

Topics
“Pick and Place Using RRT for Manipulators”
“Pick-and-Place Workflow Using RRT Planner and Stateflow for MATLAB”
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manipulatorStateSpace
State space for rigid body tree robot models

Description
The manipulatorStateSpace object represents the joint configuration state space of a rigid body
tree robot model. For a given rigidBodyTree object, the nonfixed joints in the rigid body tree model
form the state space. When sampling the state or specifying bounds, the values of the state vector
correspond to joint positions that define a joint configuration with dimension equal to the
NumStateVariables property.

Typically, the manipulator state space works with sampling-based path planners like the plannerRRT
and plannerBiRRT objects. To sample and validate paths for manipulators, combine the state space
with a state validator manipulatorCollisionBodyValidator object. Because the
manipulatorStateSpace object derives from the nav.StateSpace class, and is specified in the
StateSpace property of the path planners.

To plan paths for manipulators using only Robotics System Toolbox, see the manipulatorRRT object.

Creation

Syntax
manipSS = manipulatorStateSpace
manipSS = manipulatorStateSpace(robot)
manipSS = manipulatorStateSpace(robot,numStateVariables)

Description

manipSS = manipulatorStateSpace creates a default state space for a rigid body tree with two
revolute joints.

manipSS = manipulatorStateSpace(robot) creates a state space for the specified
rigidBodyTree object, robot.

manipSS = manipulatorStateSpace(robot,numStateVariables) specifies the number of
state variables, which is the number of nonfixed joints in the robot model. You must use this syntax
for code generation.

Properties
RigidBodyTree — Rigid body tree robot model
rigidBodyTree object

Rigid body tree robot model, specified as a rigidBodyTree object. After you create the
manipulatorStateSpace object, this property is read-only.
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Name — Name of state space object
"manipulatorStateSpace" (default) | string scalar | character vector

This property is read-only.

Name of the state space object, specified as a string scalar or character vector.
Example: "customManipulatorState"

NumStateVariables — Dimension of state space
2 (default) | positive numeric integer

Dimension of the state space, specified as a positive numeric integer. This property is the dimension
of the state space and should match the size of the robot model joint configuration. To get a joint
configuration, see the homeConfiguration or randomConfiguration function.

After you create the object, this property is read-only.

StateBounds — Minimum and maximum bounds of joint positions
n-by-2 matrix

Min and max bounds of the joint positions, specified as an n-by-2 matrix with rows of form [min
max]. n is the number of state variables in the joint configuration space, specified in the
NumStateVariables property. You must specify the [min max] joint positions in meters for
prismatic joints and in radians for revolute joints.
Example: [-10 10; -10 10; -pi pi]
Data Types: double

Object Functions
distance Distance between states
enforceStateBounds Limit state to state space bounds
sampleUniform Sample state using uniform distribution
sampleGaussian Sample state using Gaussian distribution
interpolate Interpolate between states

Examples

Validate State and Motion Manipulator State Space

Generate states to form a path, validate motion between states, and check for self-collisions and
environmental collisions with objects in your world. The manipulatorStateSpace object
represents the joint configuration space of your rigid body tree robot model, and can sample states,
calculate distances, and enforce state bounds. The manipulatorCollisionBodyValidator object
validates the state and motion based on the collision bodies in your robot model and any obstacles in
your environment.

Load Robot Model

Use the loadrobot function to access predefined robot models. This example uses the Quanser
QArm™ robot and joint configurations are specified as row vectors.

robot = loadrobot("quanserQArm",DataFormat="row");
figure(Visible="on")
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show(robot);
xlim([-0.5 0.5])
ylim([-0.5 0.5])
zlim([-0.25 0.75])
hold on

Configure State Space and State Validation

Create the state space and state validator from the robot model.

ss = manipulatorStateSpace(robot);
sv = manipulatorCollisionBodyValidator(ss,SkippedSelfCollisions="parent");

Set the validation distance to 0.05, which is based on the distance normal between two states. You
can configure the validator to ignore self collisions to improve the speed of validation, but must
consider whether your robot model has the proper joint limit settings set to ensure it does not collide
with itself.

sv.ValidationDistance = 0.05;
sv.IgnoreSelfCollision = true;

Place collision objects in the robot environment. Set the Environment property of the collision
validator object using a cell array of objects.

box = collisionBox(0.1,0.1,0.5); % XYZ Lengths
box.Pose = trvec2tform([0.2 0.2 0.5]); % XYZ Position
sphere = collisionSphere(0.25); % Radius
sphere.Pose = trvec2tform([-0.2 -0.2 0.5]); % XYZ Position
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env = {box sphere};
sv.Environment = env;

Visualize the environment.

for i = 1:length(env)
    show(env{i})
end
view(60,10)

Plan Path

Start with the home configuration as the first point on the path.

rng(0); % Repeatable results
start = homeConfiguration(robot);
path = start;
idx = 1;

Plan a path using these steps, in a loop:

• Sample a nearby goal configuration, using the Gaussian distribution, by specifying the standard
deviation for each joint angle.

• Check if the sampled goal state is valid.
• If the sampled goal state is valid, check if the motion between states is valid and, if so, add it to

the path.
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for i = 2:25
    goal = sampleGaussian(ss,start,0.25*ones(4,1));
    validState = isStateValid(sv,goal);
    
    if validState % If state is valid, check motion between states.
        [validMotion,~] = isMotionValid(sv,path(idx,:),goal);

        if validMotion % If motion is valid, add to path.
            path = [path; goal];
            idx = idx + 1;
        end
    end
end

Visualize Path

After generating the path of valid motions, visualize the robot motion. Because you sampled random
states near the home configuration, you should see the arm move around that initial configuration.

To visualize the path of the end effector in 3-D, get the transformation, relative to the base world
frame at each point. Store the points as an xyz translation vector. Plot the path of the end effector.

eePose = nan(3,size(path,1));

for i = 1:size(path,1)
    show(robot,path(i,:),PreservePlot=false);
    eePos(i,:) = tform2trvec(getTransform(robot,path(i,:),"END-EFFECTOR")); % XYZ translation vector
    plot3(eePos(:,1),eePos(:,2),eePos(:,3),"-b",LineWidth=2)
    drawnow
end

1 Classes

1-250



Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
rigidBodyTree | manipulatorCollisionBodyValidator | manipulatorRRT |
workspaceGoalRegion

Functions
isStateValid | isMotionValid | sampleUniform | sampleGaussian | interpolate |
distance | enforceStateBounds
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mobileRobotPRM
Create probabilistic roadmap path planner

Description
The mobileRobotPRM object is a roadmap path planner object for the environment map specified in
the Map property. The object uses the map to generate a roadmap, which is a network graph of
possible paths in the map based on free and occupied spaces. You can customize the number of
nodes, NumNodes, and the connection distance, ConnectionDistance, to fit the complexity of the
map and find an obstacle-free path from a start to an end location.

After the map is defined, the mobileRobotPRM path planner generates the specified number of
nodes throughout the free spaces in the map. A connection between nodes is made when a line
between two nodes contains no obstacles and is within the specified connection distance.

After defining a start and end location, to find an obstacle-free path using this network of
connections, use the findpath method. If findpath does not find a connected path, it returns an
empty array. By increasing the number of nodes or the connection distance, you can improve the
likelihood of finding a connected path, but tuning these properties is necessary. To see the roadmap
and the generated path, use the visualization options in show. If you change any of the
mobileRobotPRM properties, call update, show, or findpath to recreate the roadmap.

Creation

Syntax
planner = mobileRobotPRM

planner = mobileRobotPRM(map)
planner = mobileRobotPRM(map,numnodes)

Description

planner = mobileRobotPRM creates an empty roadmap with default properties. Before you can
use the roadmap, you must specify a binaryOccupancyMap object in the Map property.

planner = mobileRobotPRM(map) creates a roadmap with map set as the Map property, where
map is a binaryOccupancyMap object.

planner = mobileRobotPRM(map,numnodes) sets the maximum number of nodes, numnodes, to
the NumNodes property.

Input Arguments

map — Map representation
binaryOccupancyMap object
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Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object is a matrix grid with binary values indicating obstacles as true
(1) and free locations as false (0).

numnodes — Maximum number of nodes in roadmap
50 (default) | scalar

Maximum number of nodes in roadmap, specified as a scalar. By increasing this value, the complexity
and computation time for the path planner increases.

Properties
ConnectionDistance — Maximum distance between two connected nodes
inf (default) | scalar in meters

Maximum distance between two connected nodes, specified as the comma-separated pair consisting
of "ConnectionDistance" and a scalar in meters. This property controls whether nodes are
connected based on their distance apart. Nodes are connected only if no obstacles are directly in the
path. By decreasing this value, the number of connections is lowered, but the complexity and
computation time decreases as well.

Map — Map representation
binaryOccupancyMap object | occupancyMap object

Map representation, specified as the comma-separated pair consisting of "Map" and a
binaryOccupancyMap or occupancyMap object. This object represents the environment of the
robot. The object is a matrix grid with values indicating the occupancy of locations in the map.

NumNodes — Number of nodes in the map
50 (default) | scalar

Number of nodes in the map, specified as the comma-separated pair consisting of "NumNodes" and a
scalar. By increasing this value, the complexity and computation time for the path planner increases.

Object Functions
findpath Find path between start and goal points on roadmap
show Show map, roadmap, and path
update Create or update roadmap

Version History
Introduced in R2019b

mobileRobotPRM was renamed
Behavior change in future release

The mobileRobotPRM object was renamed from robotics.PRM. Use mobileRobotPRM for all
object creation.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The map input must be specified on creation of the mobileRobotPRM object.

See Also
binaryOccupancyMap | occupancyMap | controllerPurePursuit

Topics
“Path Planning in Environments of Different Complexity”
“Probabilistic Roadmaps (PRM)”
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pointCloud
Object for storing 3-D point cloud

Description
The pointCloud object creates point cloud data from a set of points in 3-D coordinate system. The
point cloud data is stored as an object with the properties listed in “Properties” on page 1-256. Use
“Object Functions” on page 1-257 to retrieve, select, and remove desired points from the point cloud
data.

Creation

Syntax
ptCloud = pointCloud(xyzPoints)
ptCloud = pointCloud(xyzPoints,Name,Value)

Description

ptCloud = pointCloud(xyzPoints) returns a point cloud object with coordinates specified by
xyzPoints.

ptCloud = pointCloud(xyzPoints,Name,Value) creates a pointCloud object with properties
specified as one or more Name,Value pair arguments. For example,
pointCloud(xyzPoints,'Color',[0 0 0]) sets the Color property of the point xyzPoints as
[0 0 0]. Enclose each property name in quotes. Any unspecified properties have default values.

Input Arguments

xyzPoints — 3-D coordinate points
M-by-3 list of points | M-by-N-by-3 array for organized point cloud

3-D coordinate points, specified as an M-by-3 list of points or an M-by-N-by-3 array for an organized
point cloud. The 3-D coordinate points specify the x, y, and z positions of a point in the 3-D coordinate
space. The first two dimensions of an organized point cloud correspond to the scanning order from
sensors such as RGBD or lidar. This argument sets the Location property.
Data Types: single | double

Output Arguments

ptCloud — Point cloud
pointCloud object

Point cloud, returned as a pointCloud object with the properties listed in “Properties” on page 1-
256.
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Properties
Location — Position of the points in 3-D coordinate space
M-by-3 array | M-by-N-by-3 array

This property is read-only.

Position of the points in 3-D coordinate space, specified as an M-by-3 or M-by-N-by-3 array. Each
entry specifies the x, y, and z coordinates of a point in the 3-D coordinate space. You cannot set this
property as a name-value pair. Use the xyzPoints input argument.
Data Types: single | double

Color — Point cloud color
[] (default) | M-by-3 array | M-by-N-by-3 array

Point cloud color, specified as an M-by-3 or M-by-N-by-3 array. Use this property to set the color of
points in point cloud. Each entry specifies the RGB color of a point in the point cloud data. Therefore,
you can specify the same color for all points or a different color for each point.

• The specified RGB values must lie within the range [0, 1], when you specify the data type for
Color as single or double.

• The specified RGB values must lie within the range [0, 255], when you specify the data type for
Color as uint8.

Coordinates Valid assignment of Color
M-by-3 array M-by-3 array containing RGB values for each point
M-by-N-by-3 array M-by-N-by-3 array containing RGB values for each point

Data Types: uint8

Normal — Surface normals
[] (default) | M-by-3 array | M-by-N-by-3 array

Surface normals, specified as a M-by-3 or M-by-N-by-3 array. Use this property to specify the normal
vector with respect to each point in the point cloud. Each entry in the surface normals specifies the x,
y, and z component of a normal vector.

Coordinates Surface Normals
M-by-3 array M-by-3 array, where each row contains a corresponding normal vector.
M-by-N-by-3 array M-by-N-by-3 array containing a 1-by-1-by-3 normal vector for each point.

Data Types: single | double

Intensity — Grayscale intensities
[] (default) | M-by-1 vector | M-by-N matrix

Grayscale intensities at each point, specified as a M-by-1 vector or M-by-N matrix. The function maps
each intensity value to a color value in the current colormap.

Coordinates Intensity
M-by-3 array M-by-1 vector, where each row contains a corresponding intensity value.
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Coordinates Intensity
M-by-N-by-3 array M-by-N matrix containing intensity value for each point.

Data Types: single | double | uint8

Count — Number of points
positive integer

This property is read-only.

Number of points in the point cloud, stored as a positive integer.

XLimits — Range of x coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along x-axis, stored as a 1-by-2 vector.

YLimits — Range of y coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along y-axis, stored as a 1-by-2 vector.

ZLimits — Range of z coordinates
1-by-2 vector

This property is read-only.

Range of coordinates along z-axis, stored as a 1-by-2 vector.

Object Functions
findNearestNeighbors Find nearest neighbors of a point in point cloud
findNeighborsInRadius Find neighbors within a radius of a point in the point cloud
findPointsInROI Find points within a region of interest in the point cloud
removeInvalidPoints Remove invalid points from point cloud
select Select points in point cloud
copy Copy array of handle objects

Tips
The pointCloud object is a handle object. If you want to create a separate copy of a point cloud,
you can use the MATLAB copy method.
ptCloudB = copy(ptCloudA)

If you want to preserve a single copy of a point cloud, which can be modified by point cloud functions,
use the same point cloud variable name for the input and output.
ptCloud = pcFunction(ptCloud)
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Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:

• GPU code generation for variable input sizes is not optimized. Consider using constant size inputs
for an optimized code generation.

• GPU code generation supports the 'Color', 'Normal', and 'Intensity' name-value pairs.
• GPU code generation supports the findNearestNeighbors, findNeighborsInRadius,

findPointsInROI, removeInvalidPoints, and select methods.
• For very large inputs, the memory requirements of the algorithm may exceed the GPU device

limits. In such cases, consider reducing the input size to proceed with code generation.

See Also
Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints | select
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quaternion
Create a quaternion array

Description
A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations.

A quaternion number is represented in the form a + bi + c j + dk, where a, b, c, and d parts are real
numbers, and i, j, and k are the basis elements, satisfying the equation: i2 = j2 = k2 = ijk = −1.

The set of quaternions, denoted by H, is defined within a four-dimensional vector space over the real
numbers, R4. Every element of H has a unique representation based on a linear combination of the
basis elements, i, j, and k.

All rotations in 3-D can be described by an axis of rotation and angle about that axis. An advantage of
quaternions over rotation matrices is that the axis and angle of rotation is easy to interpret. For
example, consider a point in R3. To rotate the point, you define an axis of rotation and an angle of
rotation.

The quaternion representation of the rotation may be expressed as
q = cos θ 2 + sin θ 2 ubi + uc j + udk , where θ is the angle of rotation and [ub, uc, and ud] is the axis
of rotation.

Creation
Syntax
quat = quaternion()
quat = quaternion(A,B,C,D)
quat = quaternion(matrix)
quat = quaternion(RV,'rotvec')
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quat = quaternion(RV,'rotvecd')
quat = quaternion(RM,'rotmat',PF)
quat = quaternion(E,'euler',RS,PF)
quat = quaternion(E,'eulerd',RS,PF)

Description

quat = quaternion() creates an empty quaternion.

quat = quaternion(A,B,C,D) creates a quaternion array where the four quaternion parts are
taken from the arrays A, B, C, and D. All the inputs must have the same size and be of the same data
type.

quat = quaternion(matrix) creates an N-by-1 quaternion array from an N-by-4 matrix, where
each column becomes one part of the quaternion.

quat = quaternion(RV,'rotvec') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in radians.

quat = quaternion(RV,'rotvecd') creates an N-by-1 quaternion array from an N-by-3 matrix of
rotation vectors, RV. Each row of RV represents a rotation vector in degrees.

quat = quaternion(RM,'rotmat',PF) creates an N-by-1 quaternion array from the 3-by-3-by-N
array of rotation matrices, RM. PF can be either 'point' if the Euler angles represent point rotations
or 'frame' for frame rotations.

quat = quaternion(E,'euler',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in radians. The angles in E are rotations
about the axes in sequence RS.

quat = quaternion(E,'eulerd',RS,PF) creates an N-by-1 quaternion array from the N-by-3
matrix, E. Each row of E represents a set of Euler angles in degrees. The angles in E are rotations
about the axes in sequence RS.

Input Arguments

A,B,C,D — Quaternion parts
comma-separated arrays of the same size

Parts of a quaternion, specified as four comma-separated scalars, matrices, or multi-dimensional
arrays of the same size.
Example: quat = quaternion(1,2,3,4) creates a quaternion of the form 1 + 2i + 3j + 4k.
Example: quat = quaternion([1,5],[2,6],[3,7],[4,8]) creates a 1-by-2 quaternion array
where quat(1,1) = 1 + 2i + 3j + 4k and quat(1,2) = 5 + 6i + 7j + 8k
Data Types: single | double

matrix — Matrix of quaternion parts
N-by-4 matrix

Matrix of quaternion parts, specified as an N-by-4 matrix. Each row represents a separate quaternion.
Each column represents a separate quaternion part.
Example: quat = quaternion(rand(10,4)) creates a 10-by-1 quaternion array.
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Data Types: single | double

RV — Matrix of rotation vectors
N-by-3 matrix

Matrix of rotation vectors, specified as an N-by-3 matrix. Each row of RV represents the [X Y Z]
elements of a rotation vector. A rotation vector is a unit vector representing the axis of rotation scaled
by the angle of rotation in radians or degrees.

To use this syntax, specify the first argument as a matrix of rotation vectors and the second argument
as the 'rotvec' or 'rotvecd'.
Example: quat = quaternion(rand(10,3),'rotvec') creates a 10-by-1 quaternion array.
Data Types: single | double

RM — Rotation matrices
3-by-3 matrix | 3-by-3-by-N array

Array of rotation matrices, specified by a 3-by-3 matrix or 3-by-3-by-N array. Each page of the array
represents a separate rotation matrix.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: single | double

PF — Type of rotation matrix
'point' | 'frame'

Type of rotation matrix, specified by 'point' or 'frame'.
Example: quat = quaternion(rand(3),'rotmat','point')
Example: quat = quaternion(rand(3),'rotmat','frame')
Data Types: char | string

E — Matrix of Euler angles
N-by-3 matrix

Matrix of Euler angles, specified by an N-by-3 matrix. If using the 'euler' syntax, specify E in
radians. If using the 'eulerd' syntax, specify E in degrees.
Example: quat = quaternion(E,'euler','YZY','point')
Example: quat = quaternion(E,'euler','XYZ','frame')
Data Types: single | double

RS — Rotation sequence
character vector | scalar string

Rotation sequence, specified as a three-element character vector:

• 'YZY'
• 'YXY'
• 'ZYZ'
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• 'ZXZ'
• 'XYX'
• 'XZX'
• 'XYZ'
• 'YZX'
• 'ZXY'
• 'XZY'
• 'ZYX'
• 'YXZ'

Assume you want to determine the new coordinates of a point when its coordinate system is rotated
using frame rotation. The point is defined in the original coordinate system as:

point = [sqrt(2)/2,sqrt(2)/2,0];

In this representation, the first column represents the x-axis, the second column represents the y-
axis, and the third column represents the z-axis.

You want to rotate the point using the Euler angle representation [45,45,0]. Rotate the point using
two different rotation sequences:

• If you create a quaternion rotator and specify the 'ZYX' sequence, the frame is first rotated 45°
around the z-axis, then 45° around the new y-axis.

quatRotator = quaternion([45,45,0],'eulerd','ZYX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.7071   -0.0000    0.7071

• If you create a quaternion rotator and specify the 'YZX' sequence, the frame is first rotated 45°
around the y-axis, then 45° around the new z-axis.

quatRotator = quaternion([45,45,0],'eulerd','YZX','frame');
newPointCoordinate = rotateframe(quatRotator,point)

newPointCoordinate =

    0.8536    0.1464    0.5000
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Data Types: char | string

Object Functions
angvel Angular velocity from quaternion array
classUnderlying Class of parts within quaternion
compact Convert quaternion array to N-by-4 matrix
conj Complex conjugate of quaternion
' Complex conjugate transpose of quaternion array
dist Angular distance in radians
euler Convert quaternion to Euler angles (radians)
eulerd Convert quaternion to Euler angles (degrees)
exp Exponential of quaternion array
.\,ldivide Element-wise quaternion left division
log Natural logarithm of quaternion array
meanrot Quaternion mean rotation
- Quaternion subtraction
* Quaternion multiplication
norm Quaternion norm
normalize Quaternion normalization
ones Create quaternion array with real parts set to one and imaginary parts set to zero
parts Extract quaternion parts
.^,power Element-wise quaternion power
prod Product of a quaternion array
randrot Uniformly distributed random rotations
./,rdivide Element-wise quaternion right division
rotateframe Quaternion frame rotation
rotatepoint Quaternion point rotation
rotmat Convert quaternion to rotation matrix
rotvec Convert quaternion to rotation vector (radians)
rotvecd Convert quaternion to rotation vector (degrees)
slerp Spherical linear interpolation
.*,times Element-wise quaternion multiplication
' Transpose a quaternion array
- Quaternion unary minus
zeros Create quaternion array with all parts set to zero

Examples

Create Empty Quaternion
quat = quaternion()
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quat = 

  0x0 empty quaternion array

By default, the underlying class of the quaternion is a double.

classUnderlying(quat)

ans = 
'double'

Create Quaternion by Specifying Individual Quaternion Parts

You can create a quaternion array by specifying the four parts as comma-separated scalars, matrices,
or multidimensional arrays of the same size.

Define quaternion parts as scalars.

A = 1.1;
B = 2.1;
C = 3.1;
D = 4.1;
quatScalar = quaternion(A,B,C,D)

quatScalar = quaternion
     1.1 + 2.1i + 3.1j + 4.1k

Define quaternion parts as column vectors.

A = [1.1;1.2];
B = [2.1;2.2];
C = [3.1;3.2];
D = [4.1;4.2];
quatVector = quaternion(A,B,C,D)

quatVector = 2x1 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k
     1.2 + 2.2i + 3.2j + 4.2k

Define quaternion parts as matrices.

A = [1.1,1.3; ...
     1.2,1.4];
B = [2.1,2.3; ...
     2.2,2.4];
C = [3.1,3.3; ...
     3.2,3.4];
D = [4.1,4.3; ...
     4.2,4.4];
quatMatrix = quaternion(A,B,C,D)

quatMatrix = 2x2 quaternion array
     1.1 + 2.1i + 3.1j + 4.1k     1.3 + 2.3i + 3.3j + 4.3k
     1.2 + 2.2i + 3.2j + 4.2k     1.4 + 2.4i + 3.4j + 4.4k
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Define quaternion parts as three dimensional arrays.
A = randn(2,2,2);
B = zeros(2,2,2);
C = zeros(2,2,2);
D = zeros(2,2,2);
quatMultiDimArray = quaternion(A,B,C,D)

quatMultiDimArray = 2x2x2 quaternion array
quatMultiDimArray(:,:,1) = 

     0.53767 +       0i +       0j +       0k     -2.2588 +       0i +       0j +       0k
      1.8339 +       0i +       0j +       0k     0.86217 +       0i +       0j +       0k

quatMultiDimArray(:,:,2) = 

     0.31877 +       0i +       0j +       0k    -0.43359 +       0i +       0j +       0k
     -1.3077 +       0i +       0j +       0k     0.34262 +       0i +       0j +       0k

Create Quaternion by Specifying Quaternion Parts Matrix

You can create a scalar or column vector of quaternions by specify an N-by-4 matrix of quaternion
parts, where columns correspond to the quaternion parts A, B, C, and D.

Create a column vector of random quaternions.

quatParts = rand(3,4)

quatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706

quat = quaternion(quatParts)

quat = 3x1 quaternion array
     0.81472 + 0.91338i +  0.2785j + 0.96489k
     0.90579 + 0.63236i + 0.54688j + 0.15761k
     0.12699 + 0.09754i + 0.95751j + 0.97059k

To retrieve the quatParts matrix from quaternion representation, use compact.

retrievedquatParts = compact(quat)

retrievedquatParts = 3×4

    0.8147    0.9134    0.2785    0.9649
    0.9058    0.6324    0.5469    0.1576
    0.1270    0.0975    0.9575    0.9706
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Create Quaternion by Specifying Rotation Vectors

You can create an N-by-1 quaternion array by specifying an N-by-3 matrix of rotation vectors in
radians or degrees. Rotation vectors are compact spatial representations that have a one-to-one
relationship with normalized quaternions.

Rotation Vectors in Radians

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [0.3491,0.6283,0.3491];
quat = quaternion(rotationVector,'rotvec')

quat = quaternion
     0.92124 + 0.16994i + 0.30586j + 0.16994k

norm(quat)

ans = 1.0000

You can convert from quaternions to rotation vectors in radians using the rotvec function. Recover
the rotationVector from the quaternion, quat.

rotvec(quat)

ans = 1×3

    0.3491    0.6283    0.3491

Rotation Vectors in Degrees

Create a scalar quaternion using a rotation vector and verify the resulting quaternion is normalized.

rotationVector = [20,36,20];
quat = quaternion(rotationVector,'rotvecd')

quat = quaternion
     0.92125 + 0.16993i + 0.30587j + 0.16993k

norm(quat)

ans = 1

You can convert from quaternions to rotation vectors in degrees using the rotvecd function. Recover
the rotationVector from the quaternion, quat.

rotvecd(quat)

ans = 1×3

   20.0000   36.0000   20.0000
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Create Quaternion by Specifying Rotation Matrices

You can create an N-by-1 quaternion array by specifying a 3-by-3-by-N array of rotation matrices.
Each page of the rotation matrix array corresponds to one element of the quaternion array.

Create a scalar quaternion using a 3-by-3 rotation matrix. Specify whether the rotation matrix should
be interpreted as a frame or point rotation.

rotationMatrix = [1 0         0; ...
                  0 sqrt(3)/2 0.5; ...
                  0 -0.5      sqrt(3)/2];
quat = quaternion(rotationMatrix,'rotmat','frame')

quat = quaternion
     0.96593 + 0.25882i +       0j +       0k

You can convert from quaternions to rotation matrices using the rotmat function. Recover the
rotationMatrix from the quaternion, quat.

rotmat(quat,'frame')

ans = 3×3

    1.0000         0         0
         0    0.8660    0.5000
         0   -0.5000    0.8660

Create Quaternion by Specifying Euler Angles

You can create an N-by-1 quaternion array by specifying an N-by-3 array of Euler angles in radians or
degrees.

Euler Angles in Radians

Use the euler syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in radians.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [pi/2,0,pi/4];
quat = quaternion(E,'euler','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles using the euler function. Recover the Euler
angles, E, from the quaternion, quat.

euler(quat,'ZYX','frame')

ans = 1×3

    1.5708         0    0.7854
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Euler Angles in Degrees

Use the eulerd syntax to create a scalar quaternion using a 1-by-3 vector of Euler angles in degrees.
Specify the rotation sequence of the Euler angles and whether the angles represent a frame or point
rotation.

E = [90,0,45];
quat = quaternion(E,'eulerd','ZYX','frame')

quat = quaternion
     0.65328 +  0.2706i +  0.2706j + 0.65328k

You can convert from quaternions to Euler angles in degrees using the eulerd function. Recover the
Euler angles, E, from the quaternion, quat.

eulerd(quat,'ZYX','frame')

ans = 1×3

   90.0000         0   45.0000

Quaternion Algebra

Quaternions form a noncommutative associative algebra over the real numbers. This example
illustrates the rules of quaternion algebra.

Addition and Subtraction

Quaternion addition and subtraction occur part-by-part, and are commutative:

Q1 = quaternion(1,2,3,4)

Q1 = quaternion
     1 + 2i + 3j + 4k

Q2 = quaternion(9,8,7,6)

Q2 = quaternion
     9 + 8i + 7j + 6k

Q1plusQ2 = Q1 + Q2

Q1plusQ2 = quaternion
     10 + 10i + 10j + 10k

Q2plusQ1 = Q2 + Q1

Q2plusQ1 = quaternion
     10 + 10i + 10j + 10k

Q1minusQ2 = Q1 - Q2
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Q1minusQ2 = quaternion
    -8 - 6i - 4j - 2k

Q2minusQ1 = Q2 - Q1

Q2minusQ1 = quaternion
     8 + 6i + 4j + 2k

You can also perform addition and subtraction of real numbers and quaternions. The first part of a
quaternion is referred to as the real part, while the second, third, and fourth parts are referred to as
the vector. Addition and subtraction with real numbers affect only the real part of the quaternion.

Q1plusRealNumber = Q1 + 5

Q1plusRealNumber = quaternion
     6 + 2i + 3j + 4k

Q1minusRealNumber = Q1 - 5

Q1minusRealNumber = quaternion
    -4 + 2i + 3j + 4k

Multiplication

Quaternion multiplication is determined by the products of the basis elements and the distributive
law. Recall that multiplication of the basis elements, i, j, and k, are not commutative, and therefore
quaternion multiplication is not commutative.

Q1timesQ2 = Q1 * Q2

Q1timesQ2 = quaternion
    -52 + 16i + 54j + 32k

Q2timesQ1 = Q2 * Q1

Q2timesQ1 = quaternion
    -52 + 36i + 14j + 52k

isequal(Q1timesQ2,Q2timesQ1)

ans = logical
   0

You can also multiply a quaternion by a real number. If you multiply a quaternion by a real number,
each part of the quaternion is multiplied by the real number individually:

Q1times5 = Q1*5

Q1times5 = quaternion
      5 + 10i + 15j + 20k

Multiplying a quaternion by a real number is commutative.
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isequal(Q1*5,5*Q1)

ans = logical
   1

Conjugation

The complex conjugate of a quaternion is defined such that each element of the vector portion of the
quaternion is negated.

Q1

Q1 = quaternion
     1 + 2i + 3j + 4k

conj(Q1)

ans = quaternion
     1 - 2i - 3j - 4k

Multiplication between a quaternion and its conjugate is commutative:

isequal(Q1*conj(Q1),conj(Q1)*Q1)

ans = logical
   1

Quaternion Array Manipulation

You can organize quaternions into vectors, matrices, and multidimensional arrays. Built-in MATLAB®
functions have been enhanced to work with quaternions.

Concatenate

Quaternions are treated as individual objects during concatenation and follow MATLAB rules for
array manipulation.

Q1 = quaternion(1,2,3,4);
Q2 = quaternion(9,8,7,6);

qVector = [Q1,Q2]

qVector = 1x2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k

Q3 = quaternion(-1,-2,-3,-4);
Q4 = quaternion(-9,-8,-7,-6);

qMatrix = [qVector;Q3,Q4]

qMatrix = 2x2 quaternion array
     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
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    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,1) = qMatrix;
qMultiDimensionalArray(:,:,2) = qMatrix

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Indexing

To access or assign elements in a quaternion array, use indexing.

qLoc2 = qMultiDimensionalArray(2)

qLoc2 = quaternion
    -1 - 2i - 3j - 4k

Replace the quaternion at index two with a quaternion one.

qMultiDimensionalArray(2) = ones('quaternion')

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

Reshape

To reshape quaternion arrays, use the reshape function.

qMatReshaped = reshape(qMatrix,4,1)

qMatReshaped = 4x1 quaternion array
     1 + 2i + 3j + 4k
    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k
    -9 - 8i - 7j - 6k
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Transpose

To transpose quaternion vectors and matrices, use the transpose function.

qMatTransposed = transpose(qMatrix)

qMatTransposed = 2x2 quaternion array
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Permute

To permute quaternion vectors, matrices, and multidimensional arrays, use the permute function.

qMultiDimensionalArray

qMultiDimensionalArray = 2x2x2 quaternion array
qMultiDimensionalArray(:,:,1) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
     1 + 0i + 0j + 0k    -9 - 8i - 7j - 6k

qMultiDimensionalArray(:,:,2) = 

     1 + 2i + 3j + 4k     9 + 8i + 7j + 6k
    -1 - 2i - 3j - 4k    -9 - 8i - 7j - 6k

qMatPermute = permute(qMultiDimensionalArray,[3,1,2])

qMatPermute = 2x2x2 quaternion array
qMatPermute(:,:,1) = 

     1 + 2i + 3j + 4k     1 + 0i + 0j + 0k
     1 + 2i + 3j + 4k    -1 - 2i - 3j - 4k

qMatPermute(:,:,2) = 

     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k
     9 + 8i + 7j + 6k    -9 - 8i - 7j - 6k

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
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rateControl
Execute loop at fixed frequency

Description
The rateControl object enables you to run a loop at a fixed frequency. It also collects statistics
about the timing of the loop iterations. Use waitfor in the loop to pause code execution until the
next time step. The loop operates every DesiredPeriod seconds, unless the enclosed code takes
longer to operate. The object uses the OverrunAction property to determine how it handles longer
loop operation times. The default setting, 'slip', immediately executes the loop if LastPeriod is
greater than DesiredPeriod. Using 'drop' causes the waitfor method to wait until the next
multiple of DesiredPeriod is reached to execute the next loop.

Tip The scheduling resolution of your operating system and the level of other system activity can
affect rate execution accuracy. As a result, accurate rate timing is limited to 100 Hz for execution of
MATLAB code. To improve performance and execution speeds, use code generation.

Creation
Syntax
rateObj = rateControl(desiredRate)

Description

rateObj = rateControl(desiredRate) creates an object that operates loops at a fixed-rate
based on your system time and directly sets the DesireRate property.

Properties
DesiredRate — Desired execution rate
scalar

Desired execution rate of loop, specified as a scalar in Hz. When using waitfor, the loop operates
every DesiredRate seconds, unless the loop takes longer. It then begins the next loop based on the
specified OverrunAction.

DesiredPeriod — Desired time period between executions
scalar

Desired time period between executions, specified as a scalar in seconds. This property is equal to
the inverse of DesiredRate.

TotalElapsedTime — Elapsed time since construction or reset
scalar

Elapsed time since construction or reset, specified as a scalar in seconds.
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LastPeriod — Elapsed time between last two calls to waitfor
NaN (default) | scalar

Elapsed time between last two calls to waitfor, specified as a scalar. By default, LastPeriod is set
to NaN until waitfor is called for the first time. After the first call, LastPeriod equals
TotalElapsedTime.

OverrunAction — Method for handling overruns
'slip' (default) | 'drop'

Method for handling overruns, specified as one of these character vectors:

• 'drop' — waits until the next time interval equal to a multiple of DesiredPeriod
• 'slip' — immediately executes the loop again

Each code section calls waitfor at the end of execution.

Object Functions
waitfor Pause code execution to achieve desired execution rate
statistics Statistics of past execution periods
reset Reset Rate object

Examples
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Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.003010
Iteration: 2 - Time Elapsed: 1.006561
Iteration: 3 - Time Elapsed: 2.004330
Iteration: 4 - Time Elapsed: 3.010003
Iteration: 5 - Time Elapsed: 4.001062
Iteration: 6 - Time Elapsed: 5.003656
Iteration: 7 - Time Elapsed: 6.012790
Iteration: 8 - Time Elapsed: 7.011572
Iteration: 9 - Time Elapsed: 8.008164
Iteration: 10 - Time Elapsed: 9.014031

Each iteration executes at a 1-second interval.

Get Statistics From Rate Object Execution

Create a rateControl object for running at 20 Hz.

r = rateControl(20);

Start a loop and control operation using the rateControl object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

stats = struct with fields:
              Periods: [0.0709 0.0452 0.0444 0.0454 0.0629 0.0417 0.0445 ... ]
           NumPeriods: 30
        AveragePeriod: 0.0501
    StandardDeviation: 0.0083
          NumOverruns: 0

Run Loop At Fixed Rate and Reset Rate Object

Create a rateControl object for running at 20 Hz.

 rateControl

1-275



r = rateControl(2);

Start a loop and control operation using the Rate object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Display the rateControl object properties after loop operation.

disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 15.0119
          LastPeriod: 0.4971

Reset the object to restart the time statistics.

reset(r);
disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 0.0042
          LastPeriod: NaN

Version History
Introduced in R2016a

rateControl was renamed
Behavior change in future release

The rateControl object was renamed from robotics.Rate. Use rateControl for all object
creation.

See Also
rosrate | waitfor | statistics | reset

Topics
“Execute Code at a Fixed-Rate”
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resamplingPolicyPF
Create resampling policy object with resampling settings

Description
The resamplingPolicyPF object stores settings for when resampling should occur when using a
particle filter for state estimation. The object contains the method that triggers resampling and the
relevant threshold for this resampling. Use this object as the ResamplingPolicy property of the
stateEstimatorPF object.

Creation

Syntax
policy = resamplingPolicyPF

Description

policy = resamplingPolicyPF creates a resamplingPolicyPF object policy, which contains
properties to be modified to control when resampling should be triggered. Use this object as the
ResamplingPolicy property of the stateEstimatorPF object.

Properties
TriggerMethod — Method for determining if resampling should occur
'ratio' (default) | character vector

Method for determining if resampling should occur, specified as a character vector. Possible choices
are 'ratio' and 'interval'. The 'interval' method triggers resampling at regular intervals of
operating the particle filter. The 'ratio' method triggers resampling based on the ratio of effective
total particles.

SamplingInterval — Fixed interval between resampling
1 (default) | scalar

Fixed interval between resampling, specified as a scalar. This interval determines during which
correction steps the resampling is executed. For example, a value of 2 means the resampling is
executed every second correction step. A value of inf means that resampling is never executed.

This property only applies with the TriggerMethod is set to 'interval'.

MinEffectiveParticleRatio — Minimum desired ratio of effective to total particles
0.5 (default) | scalar

Minimum desired ratio of effective to total particles, specified as a scalar. The effective number of
particles is a measure of how well the current set of particles approximates the posterior distribution.
A lower effective particle ratio means less particles are contributing to the estimation and resampling
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might be required. If the ratio of effective particles to total particles falls below the
MinEffectiveParticleRatio, a resampling step is triggered.

Version History
Introduced in R2019b

See Also
stateEstimatorPF | correct

Topics
“Track a Car-Like Robot Using Particle Filter”
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rigidBody
Create a rigid body

Description
The rigidBody object represents a rigid body. A rigid body is the building block for any tree-
structured robot manipulator. Each rigidBody has a rigidBodyJoint object attached to it that
defines how the rigid body can move. Rigid bodies are assembled into a tree-structured robot model
using rigidBodyTree.

Set a joint object to the Joint property before calling addBody to add the rigid body to the robot
model. When a rigid body is in a rigid body tree, you cannot directly modify its properties because it
corrupts the relationships between bodies. Use replaceJoint to modify the entire tree structure.

Creation

Syntax
body = rigidBody(name)

Description

body = rigidBody(name) creates a rigid body with the specified name. By default, the body comes
with a fixed joint.

Input Arguments

name — Name of rigid body
string scalar | character vector

Name of the rigid body, specified as a string scalar or character vector. This name must be unique to
the body so that it can be accessed in a rigidBodyTree object.

Properties
Name — Name of rigid body
string scalar | character vector

Name of the rigid body, specified as a string scalar or character vector. This name must be unique to
the body so that it can be found in a rigidBodyTree object.
Data Types: char | string

Joint — rigidBodyJoint object
handle

rigidBodyJoint object, specified as a handle. By default, the joint is 'fixed' type.
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Mass — Mass of rigid body
1 kg (default) | numeric scalar

Mass of rigid body, specified as a numeric scalar in kilograms.

CenterOfMass — Center of mass position of rigid body
[0 0 0] m (default) | [x y z] vector

Center of mass position of rigid body, specified as an [x y z] vector. The vector describes the
location of the center of mass relative to the body frame in meters.

Inertia — Inertia of rigid body
[1 1 1 0 0 0] kg•m2 (default) | [Ixx Iyy Izz Iyz Ixz Ixy] vector

Inertia of rigid body, specified as a [Ixx Iyy Izz Iyz Ixz Ixy] vector relative to the body frame
in kilogram square meters. The first three elements of the vector are the diagonal elements of the
inertia tensor. The last three elements are the off-diagonal elements of the inertia tensor. The inertia
tensor is a positive semi-definite symmetric matrix:

Parent — Rigid body parent
rigidBody object handle

Rigid body parent, specified as a rigidBody object handle. The rigid body joint defines how this
body can move relative to the parent. This property is empty until the rigid body is added to a
rigidBodyTree robot model.

Children — Rigid body children
cell array of rigidBody object handles

Rigid body children, specified as a cell array of rigidBody object handles. These rigid body children
are all attached to this rigid body object. This property is empty until the rigid body is added to a
rigidBodyTree robot model, and at least one other body is added to the tree with this body as its
parent.

Visuals — Visual geometries
cell array of string scalars | cell array of character vectors

Visual geometries, specified as a cell array of string scalars or character vectors. Each character
vector describes a type and source of a visual geometry. For example, if a mesh file, link_0.stl, is
attached to the rigid body, the visual would be Mesh:link_0.stl. Visual geometries are added to
the rigid body using addVisual.

Collisions — Collision geometries
cell array of character vectors

Collision geometries, specified as a cell array of character vectors. Each character vector describes
the type of collision object and relevant parameters of the collision geometry. To modify the collision
geometries for a rigid body, use the addCollision and clearCollision functions.
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Object Functions
copy Create a deep copy of rigid body
addCollision Add collision geometry to rigid body
addVisual Add visual geometry data to rigid body
clearCollision Clear all attached collision geometries
clearVisual Clear all visual geometries

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each rigidBody object contains a
rigidBodyJoint object and must be added to the rigidBodyTree using addBody.

Create a rigid body tree.

rbtree = rigidBodyTree;

Create a rigid body with a unique name.

body1 = rigidBody('b1');

Create a revolute joint. By default, the rigidBody object comes with a fixed joint. Replace the joint
by assigning a new rigidBodyJoint object to the body1.Joint property.

jnt1 = rigidBodyJoint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid body to.
Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

--------------------
Robot: (1 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           b1         jnt1     revolute             base(0)   
--------------------

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 1-
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284. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;
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addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off
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Version History
Introduced in R2016b

rigidBody was renamed
Behavior change in future release

The rigidBody object was renamed from robotics.RigidBody. Use rigidBody for all object
creation.

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rigidBodyJoint | rigidBodyTree | addBody | replaceJoint | addCollision | addVisual |
clearCollision | clearVisual

Topics
“Build a Robot Step by Step”
“Rigid Body Tree Robot Model”
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rigidBodyJoint
Create a joint

Description
The rigidBodyJoint objects defines how a rigid body moves relative to an attachment point. In a
tree-structured robot, a joint always belongs to a specific rigid body, and each rigid body has one
joint.

The rigidBodyJoint object can describe joints of various types. When building a rigid body tree
structure with rigidBodyTree, you must assign the Joint object to a rigid body using the
rigidBody class.

The different joint types supported are:

• fixed — Fixed joint that prevents relative motion between two bodies.
• revolute — Single degree of freedom (DOF) joint that rotates around a given axis. Also called a

pin or hinge joint.
• prismatic — Single DOF joint that slides along a given axis. Also called a sliding joint.

Each joint type has different properties with different dimensions, depending on its defined geometry.

Creation

Syntax
jointObj = rigidBodyJoint(jname)
jointObj = rigidBodyJoint(jname,jtype)

Description

jointObj = rigidBodyJoint(jname) creates a fixed joint with the specified name.

jointObj = rigidBodyJoint(jname,jtype) creates a joint of the specified type with the
specified name.

Input Arguments

jname — Joint name
string scalar | character vector

Joint name, specified as a string scalar or character vector. The joint name must be unique to access
it off the rigid body tree.
Example: "elbow_right"
Data Types: char | string
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jtype — Joint type
'fixed' (default) | string scalar | character vector

Joint type, specified as a string scalar or character vector. The joint type predefines certain properties
when creating the joint.

The different joint types supported are:

• fixed — Fixed joint that prevents relative motion between two bodies.
• revolute — Single degree of freedom (DOF) joint that rotates around a given axis. Also called a

pin or hinge joint.
• prismatic — Single DOF joint that slides along a given axis. Also called a sliding joint.

Example: "prismatic"
Data Types: char | string

Properties
Type — Joint type
'fixed' (default) | string scalar | character vector

This property is read-only.

Joint type, returned as a string scalar or character vector. The joint type predefines certain properties
when creating the joint.

The different joint types supported are:

• fixed — Fixed joint that prevents relative motion between two bodies.
• revolute — Single degree of freedom (DOF) joint that rotates around a given axis. Also called a

pin or hinge joint.
• prismatic — Single DOF joint that slides along a given axis. Also called a sliding joint.

If the rigid body that contains this joint is added to a robot model, the joint type must be changed by
replacing the joint using replaceJoint.
Example: "prismatic"
Data Types: char | string

Name — Joint name
string scalar | character vector

Joint name, returned as a string scalar or character vector. The joint name must be unique to access
it off the rigid body tree. If the rigid body that contains this joint is added to a robot model, the joint
name must be changed by replacing the joint using replaceJoint.
Example: "elbow_right"
Data Types: char | string

PositionLimits — Position limits of joint
vector
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Position limits of the joint, specified as a vector of [min max] values. Depending on the type of joint,
these values have different definitions.

• fixed — [NaN NaN] (default). A fixed joint has no joint limits. Bodies remain fixed between each
other.

• revolute — [-pi pi] (default). The limits define the angle of rotation around the axis in
radians.

• prismatic — [-0.5 0.5] (default). The limits define the linear motion along the axis in meters.

Example: [-pi/2, pi/2]

HomePosition — Home position of joint
scalar

Home position of joint, specified as a scalar that depends on your joint type. The home position must
fall in the range set by PositionLimits. This property is used by homeConfiguration to generate
the predefined home configuration for an entire rigid body tree.

Depending on the joint type, the home position has a different definition.

• fixed — 0 (default). A fixed joint has no relevant home position.
• revolute — 0 (default). A revolute joint has a home position defined by the angle of rotation

around the joint axis in radians.
• prismatic — 0 (default). A prismatic joint has a home position defined by the linear motion along

the joint axis in meters.

Example: pi/2 radians for a revolute joint

JointAxis — Axis of motion for joint
[NaN NaN NaN] (default) | three-element unit vector

Axis of motion for joint, specified as a three-element unit vector. The vector can be any direction in 3-
D space in local coordinates.

Depending on the joint type, the joint axis has a different definition.

• fixed — A fixed joint has no relevant axis of motion.
• revolute — A revolute joint rotates the body in the plane perpendicular to the joint axis.
• prismatic — A prismatic joint moves the body in a linear motion along the joint axis direction.

Example: [1 0 0] for motion around the x-axis for a revolute joint

JointToParentTransform — Fixed transform from joint to parent frame
eye(4) (default) | 4-by-4 homogeneous transform matrix

This property is read-only.

Fixed transform from joint to parent frame, returned as a 4-by-4 homogeneous transform matrix. The
transform converts the coordinates of points in the joint predecessor frame to the parent body frame.
Example: eye(4)

ChildToJointTransform — Fixed transform from child body to joint frame
eye(4) (default) | 4-by-4 homogeneous transform matrix
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This property is read-only.

Fixed transform from child body to joint frame, returned as a 4-by-4 homogeneous transform matrix.
The transform converts the coordinates of points in the child body frame to the joint successor frame.
Example: eye(4)

Object Functions
copy Create copy of joint
setFixedTransform Set fixed transform properties of joint

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each rigidBody object contains a
rigidBodyJoint object and must be added to the rigidBodyTree using addBody.

Create a rigid body tree.

rbtree = rigidBodyTree;

Create a rigid body with a unique name.

body1 = rigidBody('b1');

Create a revolute joint. By default, the rigidBody object comes with a fixed joint. Replace the joint
by assigning a new rigidBodyJoint object to the body1.Joint property.

jnt1 = rigidBodyJoint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid body to.
Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

--------------------
Robot: (1 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           b1         jnt1     revolute             base(0)   
--------------------
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Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 1-
292. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
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setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off
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Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)
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 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')
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subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Version History
Introduced in R2016b

rigidBodyJoint was renamed
Behavior change in future release

The rigidBodyJoint object was renamed from robotics.Joint. Use rigidBodyJoint for all
object creation.

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA: Addison-Wesley,

1989.

[2] Siciliano, Bruno. Robotics: Modelling, Planning and Control. London: Springer, 2009.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rigidBody | rigidBodyTree

Topics
“Build a Robot Step by Step”
“Rigid Body Tree Robot Model”
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rigidBodyTree
Create tree-structured robot

Description
The rigidBodyTree is a representation of the connectivity of rigid bodies with joints. Use this class
to build robot manipulator models in MATLAB. If you have a robot model specified using the Unified
Robot Description Format (URDF), use importrobot to import your robot model.

A rigid body tree model is made up of rigid bodies as rigidBody objects. Each rigid body has a
rigidBodyJoint object associated with it that defines how it can move relative to its parent body.
Use setFixedTransform to define the fixed transformation between the frame of a joint and the
frame of one of the adjacent bodies. You can add, replace, or remove rigid bodies from the model
using the methods of the RigidBodyTree class.

Robot dynamics calculations are also possible. Specify the Mass, CenterOfMass, and Inertia
properties for each rigidBody in the robot model. You can calculate forward and inverse dynamics
with or without external forces and compute dynamics quantities given robot joint motions and joint
inputs. To use the dynamics-related functions, set the DataFormat property to "row" or "column".

For a given rigid body tree model, you can also use the robot model to calculate joint angles for
desired end-effector positions using the robotics inverse kinematics algorithms. Specify your rigid
body tree model when using inverseKinematics or generalizedInverseKinematics.

The show method supports visualization of body meshes. Meshes are specified as .stl files and can
be added to individual rigid bodies using addVisual. Also, by default, the importrobot function
loads all the accessible .stl files specified in your URDF robot model.

Creation
Syntax
robot = rigidBodyTree
robot = rigidBodyTree("MaxNumBodies",N,"DataFormat",dataFormat)

Description

robot = rigidBodyTree creates a tree-structured robot object. Add rigid bodies to it using
addBody.

robot = rigidBodyTree("MaxNumBodies",N,"DataFormat",dataFormat) specifies an upper
bound on the number of bodies allowed in the robot when generating code. You must also specify the
DataFormat property as a name-value pair.

Properties
NumBodies — Number of bodies
integer
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This property is read-only.

Number of bodies in the robot model (not including the base), returned as an integer.

Bodies — List of rigid bodies
cell array of handles

This property is read-only.

List of rigid bodies in the robot model, returned as a cell array of handles. Use this list to access
specific RigidBody objects in the model. You can also call getBody to get a body by its name.

BodyNames — Names of rigid bodies
cell array of string scalars | cell array of character vectors

This property is read-only.

Names of rigid bodies, returned as a cell array of character vectors.

BaseName — Name of robot base
'base' (default) | string scalar | character vector

Name of robot base, returned as a string scalar or character vector.

Gravity — Gravitational acceleration experienced by robot
[0 0 0] m/s2 (default) | [x y z] vector

Gravitational acceleration experienced by robot, specified as an [x y z] vector in meters per second
squared. Each element corresponds to the acceleration of the base robot frame in that direction.

DataFormat — Input/output data format for kinematics and dynamics functions
"struct" (default) | "row" | "column"

Input/output data format for kinematics and dynamics functions, specified as "struct", "row", or
"column". To use dynamics functions, you must use either "row" or "column".

Object Functions
addBody Add body to robot
addSubtree Add subtree to robot
centerOfMass Center of mass position and Jacobian
checkCollision Check if robot is in collision
copy Copy robot model
externalForce Compose external force matrix relative to base
forwardDynamics Joint accelerations given joint torques and states
geometricJacobian Geometric Jacobian for robot configuration
gravityTorque Joint torques that compensate gravity
getBody Get robot body handle by name
getTransform Get transform between body frames
homeConfiguration Get home configuration of robot
inverseDynamics Required joint torques for given motion
massMatrix Joint-space mass matrix
randomConfiguration Generate random configuration of robot
removeBody Remove body from robot
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replaceBody Replace body on robot
replaceJoint Replace joint on body
show Show robot model in figure
showdetails Show details of robot model
subtree Create subtree from robot model
velocityProduct Joint torques that cancel velocity-induced forces
writeAsFunction Create rigidBodyTree code generating function

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each rigidBody object contains a
rigidBodyJoint object and must be added to the rigidBodyTree using addBody.

Create a rigid body tree.

rbtree = rigidBodyTree;

Create a rigid body with a unique name.

body1 = rigidBody('b1');

Create a revolute joint. By default, the rigidBody object comes with a fixed joint. Replace the joint
by assigning a new rigidBodyJoint object to the body1.Joint property.

jnt1 = rigidBodyJoint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid body to.
Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

--------------------
Robot: (1 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           b1         jnt1     revolute             base(0)   
--------------------

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 1-
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301. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;
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addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

1 Classes

1-300



References

[1] Corke, P. I., and B. Armstrong-Helouvry. “A Search for Consensus among Model Parameters
Reported for the PUMA 560 Robot.” Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, IEEE Comput. Soc. Press, 1994, pp. 1608–13. DOI.org (Crossref),
doi:10.1109/ROBOT.1994.351360.

Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)
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 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')
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subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Specify Dynamics Properties to Rigid Body Tree

To use dynamics functions to calculate joint torques and accelerations, specify the dynamics
properties for the rigidBodyTree object and rigidBody.

Create a rigid body tree model. Create two rigid bodies to attach to it.

robot = rigidBodyTree('DataFormat','row');
body1 = rigidBody('body1');
body2 = rigidBody('body2');

Specify joints to attach to the bodies. Set the fixed transformation of body2 to body1. This transform
is 1m in the x-direction.

joint1 = rigidBodyJoint('joint1','revolute');
joint2 = rigidBodyJoint('joint2');
setFixedTransform(joint2,trvec2tform([1 0 0]))
body1.Joint = joint1;
body2.Joint = joint2;
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Specify dynamics properties for the two bodies. Add the bodies to the robot model. For this example,
basic values for a rod (body1) with an attached spherical mass (body2) are given.

body1.Mass = 2;
body1.CenterOfMass = [0.5 0 0];
body1.Inertia = [0.001 0.67 0.67 0 0 0];

body2.Mass = 1;
body2.CenterOfMass = [0 0 0];
body2.Inertia = 0.0001*[4 4 4 0 0 0];

addBody(robot,body1,'base');
addBody(robot,body2,'body1');

Compute the center of mass position of the whole robot. Plot the position on the robot. Move the view
to the xy plane.

comPos = centerOfMass(robot);

show(robot);
hold on
plot(comPos(1),comPos(2),'or')
view(2)

Change the mass of the second body. Notice the change in center of mass.

body2.Mass = 20;
replaceBody(robot,'body2',body2)
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comPos2 = centerOfMass(robot);
plot(comPos2(1),comPos2(2),'*g')
hold off

Compute Forward Dynamics Due to External Forces on Rigid Body Tree Model

Calculate the resultant joint accelerations for a given robot configuration with applied external forces
and forces due to gravity. A wrench is applied to a specific body with the gravity being specified for
the whole robot.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the gravity. By default, gravity is assumed to be zero.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for the lbr robot.
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q = homeConfiguration(lbr);

Specify the wrench vector that represents the external forces experienced by the robot. Use the
externalForce function to generate the external force matrix. Specify the robot model, the end
effector that experiences the wrench, the wrench vector, and the current robot configuration. wrench
is given relative to the 'tool0' body frame, which requires you to specify the robot configuration, q.

wrench = [0 0 0.5 0 0 0.3];
fext = externalForce(lbr,'tool0',wrench,q);

Compute the resultant joint accelerations due to gravity, with the external force applied to the end-
effector 'tool0' when lbr is at its home configuration. The joint velocities and joint torques are
assumed to be zero (input as an empty vector []).

qddot = forwardDynamics(lbr,q,[],[],fext);

Compute Inverse Dynamics from Static Joint Configuration

Use the inverseDynamics function to calculate the required joint torques to statically hold a
specific robot configuration. You can also specify the joint velocities, joint accelerations, and external
forces using other syntaxes.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Generate a random configuration for lbr.

q = randomConfiguration(lbr);

Compute the required joint torques for lbr to statically hold that configuration.

tau = inverseDynamics(lbr,q);

Compute Joint Torque to Counter External Forces

Use the externalForce function to generate force matrices to apply to a rigid body tree model. The
force matrix is an m-by-6 vector that has a row for each joint on the robot to apply a six-element
wrench. Use the externalForce function and specify the end effector to properly assign the wrench
to the correct row of the matrix. You can add multiple force matrices together to apply multiple forces
to one robot.

To calculate the joint torques that counter these external forces, use the inverseDynamics function.
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Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for lbr.

q = homeConfiguration(lbr);

Set external force on link1. The input wrench vector is expressed in the base frame.

fext1 = externalForce(lbr,'link_1',[0 0 0.0 0.1 0 0]);

Set external force on the end effector, tool0. The input wrench vector is expressed in the tool0
frame.

fext2 = externalForce(lbr,'tool0',[0 0 0.0 0.1 0 0],q);

Compute the joint torques required to balance the external forces. To combine the forces, add the
force matrices together. Joint velocities and accelerations are assumed to be zero (input as []).

tau = inverseDynamics(lbr,q,[],[],fext1+fext2);

Display Robot Model with Visual Geometries

You can import robots that have .stl files associated with the Unified Robot Description format
(URDF) file to describe the visual geometries of the robot. Each rigid body has an individual visual
geometry specified. The importrobot function parses the URDF file to get the robot model and
visual geometries. The function assumes that visual geometry and collision geometry of the robot are
the same and assigns the visual geometries as collision geometries of corresponsing bodies.

Use the show function to display the visual and collosion geometries of the robot model in a figure.
You can then interact with the model by clicking components to inspect them and right-clicking to
toggle visibility.

Import a robot model as a URDF file. The .stl file locations must be properly specified in this URDF.
To add other .stl files to individual rigid bodies, see addVisual.

robot = importrobot('iiwa14.urdf');

Visualize the robot with the associated visual model. Click bodies or frames to inspect them. Right-
click bodies to toggle visibility for each visual geometry.

show(robot,'visuals','on','collision','off');
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Visualize the robot with the associated collision geometries. Click bodies or frames to inspect them.
Right-click bodies to toggle visibility for each collision geometry.

show(robot,'visuals','off','collision','on'); 
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More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:
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The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".

Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2016b
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rigidBodyTree was renamed
Behavior change in future release

The rigidBodyTree object was renamed from robotics.RigidBodyTree. Use rigidBodyTree
for all object creation.

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA: Addison-Wesley,

1989.

[2] Siciliano, Bruno, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Robotics: Modelling,
Planning and Control. London: Springer, 2009.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
importrobot | inverseKinematics | generalizedInverseKinematics | rigidBodyJoint |
rigidBody

Topics
“Build a Robot Step by Step”
“Solve Inverse Kinematics for Closed Loop Linkages”
“Compute Joint Torques To Balance An Endpoint Force and Moment”
“Rigid Body Tree Robot Model”
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rigidBodyTreeImportInfo
Object for storing rigidBodyTree import information

Description
The rigidBodyTreeImportInfo object is created by the importrobot function when converting a
Simulink® model using Simscape Multibody components. Get import information for specific bodies,
joints, or blocks using the object functions. Changes to the Simulink model are not reflected in this
object after initially calling importrobot.

Creation
[robot,importInfo] = importrobot(model) imports a Simscape Multibody model and returns
an equivalent rigidBodyTree object, robot, and info about the import in importInfo. Only fixed,
prismatic, and revolute joints are supported in the output rigidBodyTree object.

If you are importing a model that uses other joint types, constraint blocks, or variable inertias, use
the “Simscape Multibody Model Import” on page 2-0  name-value pairs to disable errors.

Properties
SourceModelName — Name of source model from Simscape Multibody
character vector

This property is read-only.

Name of the source model from Simscape Multibody, specified as a character vector. This property
matches the name of the input model when calling importrobot.
Example: 'sm_import_humanoid_urdf'
Data Types: char

RigidBodyTree — Robot model
rigidBodyTree object

This property is read-only.

Robot model, returned as a rigidBodyTree object.

BlockConversionInfo — List of blocks that were converted
structure

This property is read-only.

List of blocks that were converted from Simscape Multibody blocks to preserve compatibility,
specified as a structure with the nested fields:

• AddedBlocks
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• ImplicitJoints — Cell array of implicit joints added during the conversion process.
• ConvertedBlocks

• Joints — Cell array of joint blocks that were converted to fixed joints.
• JointSourceType — containers.Map object that associates converted joint blocks to their

original joint type.
• RemovedBlocks

• ChainClosureJoints— Cell array of joint blocks removed to open closed chains.
• SMConstraints — Cell array of constraint blocks that were removed.
• VariableInertias — Cell array of variable inertia blocks that were removed.

Object Functions
bodyInfo Import information for body
bodyInfoFromBlock Import information for block name
bodyInfoFromJoint Import information for given joint name
showdetails Display details of imported robot

Version History
Introduced in R2018b

rigidBodyTreeImportInfo was renamed
Behavior change in future release

The rigidBodyTreeImportInfo object was renamed from
robotics.RigidBodyTreeImportInfo. Use rigidBodyTreeImportInfo for all object creation.

See Also
importrobot | rigidBodyTree

Topics
“Rigid Body Tree Robot Model”
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robotLidarPointCloudGenerator
Generate point cloud from meshes

Description
The robotLidarPointCloudGenerator System object generates detections from a statistical
simulated lidar sensor. The system object uses a statistical sensor model to simulate lidar detections
with added random noise. All detections are with respect to the coordinate frame of the vehicle-
mounted sensor. You can use the robotLidarPointCloudGenerator object in a scenario, created
using a robotSensor, containing static meshes, robot platforms, and sensors.

To generate lidar point clouds:

1 Create the robotLidarPointCloudGenerator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?

Creation

Syntax
lidar = robotLidarPointCloudGenerator
lidar = robotLidarPointCloudGenerator(Name=Value)

Description

lidar = robotLidarPointCloudGenerator creates a statistical sensor model to generate point
cloud for a lidar. This sensor model will have default properties.

lidar = robotLidarPointCloudGenerator(Name=Value) sets properties using one or more
name-value pair arguments. For example,
robotLidarPointCloudGenerator(UpdateRate=100,HasNoise=false) creates a lidar point
cloud generator that reports detections at an update rate of 100 Hz without noise.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

UpdateRate — Update rate of lidar sensor
10 (default) | positive real scalar
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Update rate of the lidar sensor, specified as a positive real scalar in Hz. This property sets the
frequency at which new detections happen.
Example: UpdateRate=100
Data Types: single | double

MaxRange — Maximum detection range of lidar sensor
120 (default) | positive real scalar

Maximum detection range of the lidar sensor, specified as a positive real scalar in meters. The sensor
does not detect objects beyond this range.
Example: MaxRange=100
Data Types: single | double

RangeAccuracy — Accuracy of range measurements
0.0020 (default) | positive real scalar

Accuracy of the range measurements, specified as a positive real scalar in meters. This property sets
the one-standard-deviation accuracy of the sensor range measurements.
Example: RangeAccuracy=0.001
Data Types: single | double

AzimuthResolution — Azimuthal resolution of lidar sensor
0.1600 (default) | positive real scalar

Azimuthal resolution of the lidar sensor, specified as a positive real scalar in degrees. The azimuthal
resolution defines the minimum separation in azimuth angle at which the lidar sensor can distinguish
two targets.
Example: AzimuthResolution=0.6000
Data Types: single | double

ElevationResolution — Elevation resolution of lidar sensor
1.2500 (default) | positive real scalar

Elevation resolution of the lidar sensor, specified as a positive real scalar in degrees. The elevation
resolution defines the minimum separation in elevation angle at which the lidar can distinguish two
targets.
Example: ElevationResolution=0.6000
Data Types: single | double

AzimuthLimits — Azimuthal limits of lidar sensor
[-180 180] (default) | two-element vector

Azimuth limits of the lidar sensor, specified as a two-element vector of the form [min max]. Units are
in degrees.
Example: AzimuthLimits=[-60 100]
Data Types: single | double

ElevationLimits — Elevation limits of lidar sensor
[-20 20] (default) | two-element vector
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Elevation limits of the lidar sensor, specified as a two-element vector of the form [min max]. Units are
in degrees.
Example: ElevationLimits=[-60 100]
Data Types: single | double

HasNoise — Add noise to lidar sensor measurements
true or 1 (default) | false or 0

Add noise to lidar sensor measurements, specified as true or false. Set this property to true to
add noise to the sensor measurements. Otherwise, the measurements have no noise. The sensor adds
random Gaussian noise to each point with mean equal to zero and standard deviation specified by the
RangeAccuracy property.
Example: HasNoise=false
Data Types: logical

HasOrganizedOutput — Output generated data as organized point cloud locations
true or 1 (default) | false or 0

Output generated data as organized point cloud locations, specified as true or false.

When this property is set as true, the Location property of the pointCloud object is an M-by-N-by-3
matrix of organized point cloud. M is the number of elevation channels, and N is the number of
azimuth channels.

When this property is set as false, the Location property of the pointCloud object is an M-by-3
matrix of unorganized list of points. M is the product of the numbers of elevation and azimuth
channels.
Example: HasOrganizedOutput=false
Data Types: logical

Usage

Syntax
ptCloud = lidar(tgts,simTime)
[ptCloud,isValidTime] = lidar(tgts,simTime)

Description

ptCloud = lidar(tgts,simTime) generates a lidar point cloud object ptCloud from the
specified target object, tgts, at the specified simulation time simTime.

[ptCloud,isValidTime] = lidar(tgts,simTime) additionally returns isValidTime which
specifies if the specified simTime is a multiple of the sensor's update interval (1/UpdateRate).

Input Arguments

tgts — Target object data
structure | structure array

1 Classes

1-316



Target object data, specified as a structure or structure array. Each structure corresponds to a mesh.
The table shows the properties that the object uses to generate detections.

Target Object Data

Field Description
Mesh An extendedObjectMesh object representing

the geometry of the target object in its own
coordinate frame.

Position A three-element vector defining the coordinate
position of the target with respect to the sensor
frame.

Orientation A quaternion object or a 3-by-3 matrix,
containing Euler angles, defining the orientation
of the target with respect to the sensor frame.

Example: struct("Mesh",scale(extendedObjectMesh('cuboid'),[100 100
2]),"Position",[0 0 -10],"Orientation",quaternion([1 0 0 0]))

Data Types: struct

simTime — Current simulation time
positive real scalar

Current simulation time, specified as a positive real scalar in seconds. The lidar object calls the
lidar point cloud generator at regular intervals to generate new point clouds at a frequency defined
by the updateRate property. The value of the UpdateRate property must be an integer multiple of
the simulation time interval. Updates requested from the sensor between update intervals do not
generate a point cloud.
Example: 0
Data Types: single | double

Output Arguments

ptCloud — Point cloud data
pointCloud object

Point cloud data, returned as a pointCloud object.

isValidTime — Valid time to generate point cloud
false or 0 | true or 1

Valid time to generate point cloud, returned as logical 0 (false) or 1 (true). isValidTime is 0
when the requested update time is not a multiple of the updateRate property value.
Data Types: logical

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generate Point Clouds from Mesh

This example shows how to use a statistical lidar sensor model to generate point clouds from a mesh.

Create Sensor Model

Create a statistical sensor model, lidar, using the robotLidarPointCloudGenerator System
object.

lidar = robotLidarPointCloudGenerator(HasOrganizedOutput=false);

Create Floor

Use the extendedObjectMesh object to create mesh for the target object. Define the position and
orientation of the target object with respect to the sensor frame.

target = struct("Mesh",scale(extendedObjectMesh("cuboid"),[100 100 2]), ...
                "Position",[0 0 -10], ...
                "Orientation",quaternion([1 0 0 0]));

Generate Point Clouds from Floor

ptCloud = lidar(target,0);

Visualize

Use the translate function to translate the object mesh to its specified location and use the show
function to visualize it. Use the scatter3 function to plot the point clouds stored in ptCloud.

show(translate(target.Mesh,target.Position));
hold on
scatter3(ptCloud.Location(:,1),ptCloud.Location(:,2),ptCloud.Location(:,3))
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Version History
Introduced in R2022a

See Also
robotPlatform | robotScenario | robotSensor | extendedObjectMesh | pointCloud
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robotPlatform
Create robot platform in scenario

Description
The robotPlatform object represents a robot platform in a given robot scenario. Use the platform
to define and track the trajectory of an object in the scenario. To simulate sensor readings for the
platform, mount sensors such as the gpsSensor, insSensor, and
robotLidarPointCloudGenerator System object to the platform as robotSensor objects. Add a
body mesh to the platform for visualization using the updateMesh object function.

Creation

Syntax
platform = robotPlatform(name,scenario)
platform = robotPlatform( ___ ,Name=Value)

Description

platform = robotPlatform(name,scenario) creates a platform with a specified name name
and adds it to the scenario, specified as a robotScenario object. Specify the name argument as a
string scalar. The name argument sets the Name property.

platform = robotPlatform( ___ ,Name=Value) specifies options using one or more name-value
pair arguments. You can specify properties as name-value pair arguments as well.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: StartTime=10 sets the initial time of the platform trajectory to 10 seconds.

BaseTrajectory — Trajectory for robot platform base motion
[] (default) | waypointTrajectory object

Trajectory for robot platform base motion, specified as a waypointTrajectory object. By default,
the platform is assumed to be stationary and at the scenario origin. To move the platform at each
simulation step of the scenario, use the move object function.

Note The robotPlatform object must specify the same ReferenceFrame property as specified in
the waypointTrajectory object.
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InitialBasePosition — Initial robot platform base position
[0 0 0] (default) | vector of the form [x y z]

Initial robot platform base position, specified as a vector of the form [x y z]. Only specify this
name-value pair if not specifying the BaseTrajectory property.
Data Types: single | double

InitialBaseVelocity — Initial velocity of robot platform base
[0 0 0] (default) | vector of the form [vx vy vz]

Initial velocity of robot platform base, specified as a vector of the form [vx vy vz]. Only specify this
name-value pair if not specifying the BaseTrajectory property.
Data Types: single | double

InitialBaseAcceleration — Initial acceleration of robot platform base
[0 0 0] (default) | vector of the form [ax ay az]

Initial acceleration of robot platform base, specified as a vector of the form [ax ay az]. Only
specify this name-value pair if not specifying the BaseTrajectory property.
Data Types: single | double

InitialBaseOrientation — Initial robot platform base orientation
[1 0 0 0] (default) | vector of the form [w x y z]

Initial robot platform base orientation, specified as a vector of the form [w x y z], representing a
quaternion. Only specify this name-value pair if not specifying the BaseTrajectory property.
Data Types: single | double

InitialBaseAngularVelocity — Initial angular velocity of robot platform base
[0 0 0] (default) | vector of the form [wx wy wz]

Initial angular velocity of robot platform base, specified as a vector of the form [wx wy wz]. The
magnitude of the vector defines the angular speed in radians per second. The xyz-coordinates define
the axis of clockwise rotation. Only specify this name-value pair if not specifying the BaseTrajectory
property.
Data Types: single | double

ReferenceFrame — Reference frame for computing robot platform motion
"ENU" (default) | "NED"

Reference frame for computing robot platform motion, specified as "ENU" or "NED", which matches
any reference frame in the robotScenario. All platform motion is computed relative to this inertial
frame.
Data Types: string

RigidBodyTree — Rigid body tree robot platform
[] (default) | rigidBodyTree object

Rigid body tree robot platform, specified as a rigidBodyTree object.

StartTime — Initial time of robot platform trajectory
0 (default) | scalar in seconds
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Initial time of the robot platform trajectory, specified as a scalar in seconds.
Data Types: single | double

Properties
Name — Identifier for robot platform
string scalar | character vector

Identifier for the robot platform, specified as a string scalar or character vector. The name must be
unique within the scenario.
Data Types: char | string

BaseTrajectory — Trajectory for robot platform base motion
[] (default) | waypointTrajectory object

Trajectory for the robot platform base motion, specified as a waypointTrajectory object. By
default, the object assumes the base of the platform is stationary and at the scenario origin. When
specified as a waypointTrajectory object, base of the platform is moved along the trajectory
during the scenario simulation. To move the platform at each simulation step of the scenario, use the
move object function.

Note The robotPlatform object must specify the same ReferenceFrame property as specified in
the waypointTrajectory object.

ReferenceFrame — Reference frame for computing robot platform motion
"ENU" (default) | "NED"

Reference frame for computing robot platform motion, specified as "ENU" or "NED", which matches
any reference frame in the robotScenario. The object computes all platform motion relative to this
inertial frame.
Data Types: char | string

RigidBodyTree — Rigid body tree robot platform
[] (default) | rigidBodyTree object

Rigid body tree robot platform, specified as a rigidBodyTree object.

BaseMesh — Robot platform base body mesh
[1 0.5 0.3] (default) | extendedObjectMesh object

Robot platform base body mesh, specified as an extendedObjectMesh object. The body mesh
describes the 3-D model of the platform for visualization purposes. The body mesh is used to generate
3-D point cloud. The default mesh is a cuboid of the form [xlength ylength zlength] in meters.

BaseMeshColor — Robot platform base body mesh color
[1 0 0] (default) | RGB triplet

Robot platform base body mesh color when displayed in the scenario, specified as an RGB triplet.
Data Types: single | double
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BaseMeshTransform — Transform between robot platform base body and mesh frames
eye(4) (default) | 4-by-4 homogeneous transformation matrix

Transform between robot platform base body and mesh frames, specified as a 4-by-4 homogeneous
transformation matrix that maps points in the platform mesh frame to points in the body frame.
Data Types: single | double

Sensors — Sensors mounted on robot platform
[] (default) | array of robotSensor objects

Sensors mount on robot platform, specified as an array of robotSensor objects.

Object Functions
move Move robot platform in scenario
read Read robot platform motion vector
updateMesh Update robot platform body mesh

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.
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ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);

Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Version History
Introduced in R2022a

See Also
Objects
robotScenario | robotSensor | extendedObjectMesh | waypointTrajectory

Functions
move | read | updateMesh

 robotPlatform

1-325



robotScenario
Generate robot simulation scenario

Description
The robotScenario object generates a simulation scenario consisting of static meshes, robot
platforms, and sensors in a 3-D environment.

Creation
Syntax
scenario = robotScenario
scenario = robotScenario(Name=Value)

Description

scenario = robotScenario creates an empty robot scenario with default property values. The
default inertial frames are the east-north-up (ENU) and the north-east-down (NED) frames.

scenario = robotScenario(Name=Value) configures a robotScenario object with properties
using one or more name-value pair arguments.

Properties
UpdateRate — Simulation update rate
10 (default) | positive scalar

Simulation update rate, specified as a positive scalar in Hz. The step size of the scenario when using
an advance object function is equal to the inverse of the update rate.
Example: 2
Data Types: single | double

StopTime — Stop time of simulation
inf (default) | nonnegative scalar

Stop time of the simulation, specified as a nonnegative scalar in seconds. A scenario stops advancing
when it reaches the stop time.
Example: 60
Data Types: single | double

HistoryBufferSize — Maximum number of steps stored in scenario
100 (default) | positive integer greater than 1

Maximum number of steps stored in scenario, specified as a positive integer greater than 1. This
property determines the maximum number of frames of platform poses stored in the scenario. If the
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number of simulated steps exceeds the value of this property, then the scenario stores only latest
steps.
Example: 60
Data Types: single | double

ReferenceLocation — Scenario origin in geodetic coordinates
[0 0 0] (default) | vector of the form [latitude longitude altitude]

Scenario origin in geodetic coordinates, specified as a three-element vector of the form [latitude
longitude altitude]. latitude and longitude are geodetic coordinates in degrees. altitude is the
height above the WGS84 reference ellipsoid in meters.
Example: [46.017 7.750 1673]
Data Types: single | double

MaxNumFrames — Maximum number of frames in scenario
50 (default) | positive integer

Maximum number of frames in the scenario, specified as a positive integer. The combined number of
inertial frames, platforms, and sensors added to the scenario must be less than or equal to the value
of this property.
Example: 15
Data Types: single | double

CurrentTime — Current simulation time
nonnegative scalar

This property is read-only.

Current simulation time, specified as a nonnegative scalar.
Data Types: single | double

IsRunning — Indicate whether scenario is running
true | false

This property is read-only.

Indicate whether the scenario is running, specified as true or false. After a scenario simulation
starts, it runs until it reaches the stop time.
Data Types: logical

TransformTree — Transformation information between frames
transformTree object

This property is read-only.

Transformation information between all the frames in the scenario, specified as a transformTree
object. This property contains the transformation information between the inertial, platform, and
sensor frames associated with the scenario.

InertialFrames — Names of inertial frames in scenario
vector of strings
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This property is read-only.

Names of the inertial frames in the scenario, specified as a vector of strings.
Data Types: string

Meshes — Static meshes in scenario
1-by-N cell array of extendedObjectMesh objects

This property is read-only.

Static meshes in the scenario, specified as a 1-by-N cell array of extendedObjectMesh objects.

Platforms — Robot platforms in scenario
array of robotPlatform objects

This property is read-only.

Robot platforms in the scenario, specified as an array of robotPlatform objects.

Object Functions
addInertialFrame Define new inertial frame in robot scenario
addMesh Add new static mesh to robot scenario
advance Advance robot scenario simulation by one time step
binaryOccupancyMap Create 2-D binary occupancy map from robot scenario
restart Reset simulation of robot scenario
setup Prepare robot scenario for simulation
show3D Visualize robot scenario in 3-D
updateSensors Update sensor readings in robot scenario

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");
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Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.

ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);

Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotSensor | extendedObjectMesh | transformTree

Functions
addInertialFrame | addMesh | advance | binaryOccupancyMap | restart | setup | show3D |
updateSensors
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robotSensor
Sensor for robot scenario

Description
The robotSensor object creates a sensor that is rigidly attached to a robot platform, specified as a
robotPlatform object. You can specify different mounting positions and orientations. Configure this
object to automatically generate readings at fixed rate from a sensor specified as an gpsSensor,
insSensor, or robotLidarPointCloudGenerator System object or robotics.SensorAdaptor
class.

Creation

Syntax
sensor = robotSensor(name,platform,sensormodel)
sensor = robotSensor( ___ ,Name=Value)

Description

sensor = robotSensor(name,platform,sensormodel) creates a sensor with the specified
name name and sensor model sensormodel, which set the Name and SensorModel properties
respectively. The sensor is added to the platform platform specified as a robotPlatform object.
The platform argument sets the MountingBodyName property.

sensor = robotSensor( ___ ,Name=Value) sets properties using one or more name-value pair
arguments in addition to the input arguments in the previous syntax. You can specify the
MountingLocation, MountingAngles, or UpdateRate properties as name-value pairs.

Properties
Name — Sensor name
string scalar

Sensor name, specified as a string scalar. Choose a name to identify this specific sensor.
Data Types: char | string

SensorModel — Sensor model for generating readings
gpsSensor System object | insSensor System object | robotLidarPointCloudGenerator
System object

Sensor model for generating readings, specified as an gpsSensor, insSensor, or
robotLidarPointCloudGenerator System object.

MountingBodyName — Name of sensor mounted platform body
robotPlatform.Name (default) | string scalar
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Name of the sensor mounted platform body, specified as a string scalar. The rigidBodyTree based
robot platform can have multiple bodies, any valid body can be selected to mount sensor.
Data Types: char | string

MountingLocation — Sensor position on platform
[0 0 0] (default) | vector of form [x y z]

Sensor position on platform, specified as a vector of the form [x y z] in the platform frame. Units
are in meters.
Data Types: single | double

MountingAngles — Sensor orientation on platform
[0 0 0] (default) | vector of form [z y x]

Sensor orientation on platform, specified as a vector of the form [z y x] where z, y, and x are
rotations about the z-axis, y-axis, and x-axis, sequentially, in degrees. The orientation is relative to the
platform body frame.
Data Types: single | double

UpdateRate — Update rate of sensor
positive scalar

Update rate of the sensor, specified as a positive scalar in Hz. By default, the object uses the
UpdateRate property of the specified sensor model object.

The sensor update interval (1/UpdateRate) must be a multiple of the update interval for the
associated robotScenario object.
Data Types: single | double

Object Functions
read Gather latest reading from robot sensor

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
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                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.

ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);

Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end

 robotSensor

1-333



    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotLidarPointCloudGenerator | gpsSensor |
insSensor | robotics.SensorAdaptor

Functions
read
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robotics.SensorAdaptor class
Package: robotics

Custom robot sensor interface

Description
The robotics.SensorAdaptor class is an interface for adapting custom sensor models to for use
with the robotScenario object for robot scenario simulation.

The robotics.SensorAdaptor class is a handle class.

Class Attributes

Abstract true

For information on class attributes, see “Class Attributes”.

Creation

Syntax
sensorObj = robotics.SensorAdaptor(sensorModel)

Description

sensorObj = robotics.SensorAdaptor(sensorModel) creates a sensor object compatible with
the robotScenario object. sensorModel is an object handle for a custom implementation of the
SensorAdaptor class.

To get a template for a custom sensor implementation, use the
createCustomRobotSensorTemplate function.

Properties
UpdateRate — Sensor update rate (Hz)
positive scalar

Sensor update rate, specified as a positive scalar in Hz.
Example: 10
Data Types: double

SensorModel — Custom sensor model implementation
object handle

Custom sensor model implementation, specified as an object handle. To get a template for a custom
sensor implementation, use the createCustomRobotSensorTemplate function.
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Attributes:

SetAccess private

Methods
Public Methods
setup Set up custom sensor model
read Read from custom sensor model
reset Reset custom sensor model
getEmptyOutputs Return empty sensor outputs without sensor inputs

Static Methods
robotics.SensorAdaptor.getMotion Get sensor motion in platform reference frame

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.

createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.

edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 

Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];
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wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.

chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.

chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);
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figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on

In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 

while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
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    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)

        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);
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    updateSensors(scenario);
end

Version History
Introduced in R2022b

See Also
Functions
setup | read | reset | getEmptyOutputs | robotics.SensorAdaptor.getMotion |
createCustomRobotSensorTemplate

Objects
robotScenario | robotPlatform | robotSensor
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se3
SE(3) homogeneous transformation

Description
The se3 represents an SE(3) transformation as a homogeneous transformation matrix consisting of a
translation and rotation in 3-D.

This object acts like a numerical matrix enabling you to compose poses using multiplication and
division.

Creation

Syntax
transformation = se3
transformation = se3(rotation)
transformation = se3(rotation,translation)
transformation = se3(transformation)

Description

transformation = se3 creates an SE(3) transformation representing an identity rotation with no
translation.

transformation = se3(rotation) creates an SE(3) transformation representing a pure rotation
defined by the orthonormal rotation rotation with no translation. The rotation matrix is represented
by the elements in the top left of the matrix.

transformation = se3(rotation,translation) creates an SE(3) transformation representing
a rotation defined by the orthonormal rotation rotation, and the translation translation. The
function applies the rotation matrix first and the translation vector second.

transformation = se3(transformation) creates an SE(3) transformation representing a
translation and rotation as defined by the homogeneous transformation transformation.

Input Arguments

rotation — Orthonormal rotation
3-by-3 matrix | 3-by-3-by-M matrix | so3 object | M-element array of so3 objects

Orthonormal rotation, specified as a 3-by-3 matrix, a 3-by-3-byM array, a scalar so3 object, or an M-
element array of so3 objects. M is the total number of rotations.

If rotation contains more than one rotation and you also specify translation at construction, the
number of translations in translation must be one or equal to the number of rotations in
rotation. The resulting number of transformation objects is equal to the larger argument between
translation and rotation.
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Example: eye(3)
Data Types: single | double

translation — Translation
three-element row vector | N-by-3 array

Translation, specified as a N-by-3 array. N is the total number of translations and each translation is
of the form [X Y Z].

If translation contains more than one translation, the number of rotations in rotation must be
one or equal to the number of translations in translation. The resulting number of created
transformation objects is equal to the larger argument between translation and rotation.
Example: [1 4 3]
Data Types: single | double

transformation — Homogeneous transformation
4-by-4 matrix | 4-by-4-T array | se3 object | T-element array of se3 objects

Homogeneous transformation, specified as a 4-by-4 matrix, a 4-by-4-T or an se3 object. T is the total
number of transformations specified.

If transformation is an array, the resulting number of created transformations objects is equal to
T.
Example: eye(4)
Data Types: single | double

Object Functions
dist Calculate distance between transformations
interp Interpolate between transformations
mrdivide, ./ Transformation right division
mtimes, * Transformation multiplication
normalize Normalize transformation matrix
rdivide, ./ Element-wise transformation right division
rotm Extract rotation matrix
times, .* Transformation element-wise multiplication
tform Extract homogeneous transformation
transform Apply rigid body transformation to points
trvec Extract translation vector

Examples

Create SO(2), SO(3), SE(2), and SE(3) Transformations

Define a 3-by-3 rotation matrix and a three-element translation vector.

rot = eye(3);
tr = [3 5 2];

Create the SO(2) and SO(3) rotations using the rotation matrix rot.
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R2d = so2(rot(1:2,1:2))

R2d = so2
     1     0
     0     1

R3d = so3(rot)

R3d = so3
     1     0     0
     0     1     0
     0     0     1

Create the SE(2) and SE(3) rotations using the rotation matrix rot, and the translation vector tr.

T2d = se2(rot(1:2,1:2),tr(1:2))

T2d = se2
     1     0     3
     0     1     5
     0     0     1

T3d = se3(rot,tr)

T3d = se3
     1     0     0     3
     0     1     0     5
     0     0     1     2
     0     0     0     1

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2tform | eul2tform | quat2tform | rotm2tform | trvec2tform | plotTransforms

Objects
se2 | so2 | so3 | quaternion
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se2
SE(2) homogeneous transformation

Description
The se2 object represents an SE(2) transformation as a homogeneous transformation matrix
consisting of a translation and rotation in 2-D.

This object acts like a numerical matrix enabling you to compose poses using multiplication and
division.

Creation

Syntax
transformation = se2
transformation = se2(rotation)
transformation = se2(rotation,translation)
transformation = se2(transformation)

Description

transformation = se2 creates an SE(2) transformation representing an identity rotation with no
translation.

transformation = se2(rotation) creates an SE(2) transformation representing a pure rotation
defined by the orthonormal rotation rotation with no translation. The rotation matrix is represented
by the elements in the top left of the transformation.

transformation = se2(rotation,translation) creates an SE(2) transformation representing
a rotation defined by the orthonormal rotation rotation, and the translation translation. The
function applies the rotation matrix first and the translation vector second.

transformation = se2(transformation) creates an SE(2) transformation representing a
translation and rotation as defined by the homogeneous transformation transformation.

Input Arguments

rotation — Orthonormal rotation
2-by-2 matrix | 2-by-2-by-M matrix | so2 object | M-element array of so2 objects

Orthonormal rotation, specified as a 2-by-2 matrix, a 2-by-2-byM array, a scalar so2 object, or an M-
element array of so2 objects. M is the total number of rotations.

If rotation contains more than one rotation and you also specify translation at construction, the
number of translations in translation must be one or equal to the number of rotations in
rotation. The resulting number of transformation objects is equal to the larger argument between
translation and rotation.
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Example: eye(2)
Data Types: single | double

translation — Translation
two-element row vector | N-by-2 array

Translation, specified as a N-by-2 array. N is the total number of translations and each translation is
of the form [X Y].

If translation contains more than one translation, the number of rotations in rotation must be
one or equal to the number of translations in translation. The resulting number of created
transformation objects is equal to the larger argument between translation and rotation.
Example: [1 4]
Data Types: single | double

transformation — Homogeneous transformation
3-by-3 matrix | 3-by-3-T array | se2 object | T-element array of se2 objects

Homogeneous transformation, specified as a 3-by-3 matrix, a 3-by-3-T or an se3 object. T is the total
number of transformations specified.

If transformation is an array, the resulting number of created transformations objects is equal to
T.
Example: eye(3)
Data Types: single | double

Object Functions
dist Calculate distance between transformations
interp Interpolate between transformations
mrdivide, ./ Transformation right division
mtimes, * Transformation multiplication
normalize Normalize transformation matrix
rdivide, ./ Element-wise transformation right division
rotm Extract rotation matrix
times, .* Transformation element-wise multiplication
tform Extract homogeneous transformation
transform Apply rigid body transformation to points
trvec Extract translation vector

Examples

Create SO(2), SO(3), SE(2), and SE(3) Transformations

Define a 3-by-3 rotation matrix and a three-element translation vector.

rot = eye(3);
tr = [3 5 2];

Create the SO(2) and SO(3) rotations using the rotation matrix rot.
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R2d = so2(rot(1:2,1:2))

R2d = so2
     1     0
     0     1

R3d = so3(rot)

R3d = so3
     1     0     0
     0     1     0
     0     0     1

Create the SE(2) and SE(3) rotations using the rotation matrix rot, and the translation vector tr.

T2d = se2(rot(1:2,1:2),tr(1:2))

T2d = se2
     1     0     3
     0     1     5
     0     0     1

T3d = se3(rot,tr)

T3d = se3
     1     0     0     3
     0     1     0     5
     0     0     1     2
     0     0     0     1

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2tform | eul2tform | quat2tform | rotm2tform | trvec2tform | plotTransforms

Objects
se3 | so2 | so3 | quaternion

1 Classes

1-346



so3
SO(3) rotational transformation

Description
The so3 object represents an SO(3) rotational transformation in 3-D.

This object acts like a numerical matrix enabling you to compose poses using multiplication and
division.

Creation

Syntax
transformation = so3
transformation = so3(rotation)

Description

transformation = so3 creates an SO(3) transformation representing an identity rotation with no
translation.

transformation = so3(rotation) creates an SO(3) rotation representing a pure rotation
defined by the orthonormal rotation rotation.

Input Arguments

rotation — Orthonormal rotation
3-by-3 matrix | 3-by-3-by-M matrix | so3 object | M-element array of so3 objects

Orthonormal rotation, specified as a 3-by-3 matrix, a 3-by-3-byM array, a scalar so3 object, or an M-
element array of so3 objects. M is the total number of rotations.
Example: eye(3)
Data Types: single | double

Object Functions
dist Calculate distance between transformations
interp Interpolate between transformations
mtimes, * Transformation multiplication
mrdivide, ./ Transformation right division
normalize Normalize transformation matrix
rdivide, ./ Element-wise transformation right division
rotm Extract rotation matrix
times, .* Transformation element-wise multiplication
transform Apply rigid body transformation to points
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Examples

Create SO(2), SO(3), SE(2), and SE(3) Transformations

Define a 3-by-3 rotation matrix and a three-element translation vector.

rot = eye(3);
tr = [3 5 2];

Create the SO(2) and SO(3) rotations using the rotation matrix rot.

R2d = so2(rot(1:2,1:2))

R2d = so2
     1     0
     0     1

R3d = so3(rot)

R3d = so3
     1     0     0
     0     1     0
     0     0     1

Create the SE(2) and SE(3) rotations using the rotation matrix rot, and the translation vector tr.

T2d = se2(rot(1:2,1:2),tr(1:2))

T2d = se2
     1     0     3
     0     1     5
     0     0     1

T3d = se3(rot,tr)

T3d = se3
     1     0     0     3
     0     1     0     5
     0     0     1     2
     0     0     0     1

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
axang2rotm | eul2rotm | quat2rotm | tform2rotm

Objects
se2 | se3 | so2 | quaternion
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so2
SO(2) rotational transformation

Description
The so2 object represents an SO(2) rotational transformation in 2-D.

This object acts like a numerical matrix enabling you to compose poses using multiplication and
division.cos α

2 + sin α
2 xi + yj + zk

Creation

Syntax
transformation = so2
transformation = so2(rotation)

Description

transformation = so2 creates an SO(2) rotational transformation representing an identity
rotation with no translation.

transformation = so2(rotation) creates an SO(2) rotational transformation transformation
representing a pure rotation defined by the orthonormal rotation rotation.

Input Arguments

rotation — Orthonormal rotation
2-by-2 matrix | 2-by-2-by-M matrix | so2 object | M-element array of so2 objects

Orthonormal rotation, specified as a 2-by-2 matrix, a 3-by-3-byM array, a scalar so2 object, or an M-
element array of so2 objects. M is the total number of rotations.

The resulting number of transformation objects is equal to the larger argument between
translation and rotation
Example: eye(3)
Data Types: single | double

Object Functions
dist Calculate distance between transformations
interp Interpolate between transformations
mtimes, * Transformation multiplication
mrdivide, ./ Transformation right division
normalize Normalize transformation matrix
rdivide, ./ Element-wise transformation right division

1 Classes
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rotm Extract rotation matrix
times, .* Transformation element-wise multiplication
transform Apply rigid body transformation to points

Examples

Create SO(2), SO(3), SE(2), and SE(3) Transformations

Define a 3-by-3 rotation matrix and a three-element translation vector.

rot = eye(3);
tr = [3 5 2];

Create the SO(2) and SO(3) rotations using the rotation matrix rot.

R2d = so2(rot(1:2,1:2))

R2d = so2
     1     0
     0     1

R3d = so3(rot)

R3d = so3
     1     0     0
     0     1     0
     0     0     1

Create the SE(2) and SE(3) rotations using the rotation matrix rot, and the translation vector tr.

T2d = se2(rot(1:2,1:2),tr(1:2))

T2d = se2
     1     0     3
     0     1     5
     0     0     1

T3d = se3(rot,tr)

T3d = se3
     1     0     0     3
     0     1     0     5
     0     0     1     2
     0     0     0     1

Version History
Introduced in R2022b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
axang2rotm | eul2rotm | quat2rotm | tform2rotm

Objects
se2 | se3 | so3 | quaternion

1 Classes
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dist
Calculate distance between transformations

Syntax
distance = dist(transformationA,transformationB)
distance = dist(transformationA,transformationB,weights)

Description
distance = dist(transformationA,transformationB) returns the distance distance
between the poses represented by transformation transformationA and transformation
transformationB.

For the homogeneous transformation objects se2, and se3, the dist function calculates translational
and rotational distance independently and combines them in a weighted sum. Translational distance
is the Euclidean distance, and rotational distance is the angular difference between the rotation
quaternions of transformationA and transformationB.

For rotational transformation objects so2, and so3, the dist function calculates the rotational
distance as the angular difference between the rotation quaternions of transformationA and
transformationB.

distance = dist(transformationA,transformationB,weights) specifies the weights
weights for the translational and rotational distances for calculating the weighted sum of two
homogeneous transformations. The weights do not apply when calculating the distance between two
rotation transformations.

Input Arguments
transformationA — First transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationA as an array, then each element must be of the same type, and
transformationB must either be a scalar transformation object of the same type as
transformationA or an array of the same type and size as transformationA.

transformationB — Last transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationB as an array, then each element must be of the same type, and
transformationA must either be a scalar transformation object of the same type as
transformationB or an array of the same type and size as transformationB.
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weights — Weights of translation and rotation in distance sum
[1.0 0.1] (default) | two-element row vector

Weights of the translation and rotation in the distance sum, specified as a two-element row vector in
the form [WeightXYZ WeightQ]. WeightXYZ is the translational weight and WeightQ is the rotational
weight. Both weights must be nonnegative numeric scalars.

The do not affect the distance calculation when transformationA and transformationB are so2
or so3 objects.
Data Types: single | double

Output Arguments
distance — Distance between transformations
nonnegative numeric scalar

Distance between transformations, returned as a nonnegative numeric scalar. The distance calculate
changes depending on the transformation object type of transformationA and transformationB:

• se2 and se3 — The dist function calculates translational and rotational distance independently
and combines them in a weighted sum specified by the weights argument. The translational
distance is the Euclidean distance between transformationA and transformationB. The
rotational distance is the angular difference between the rotations of transformationA and
transformationB.

• so2 and so3 — The dist function calculates the rotational distance as the angular difference
between the rotations of transformationA and transformationB.

To calculate the rotational distance, the dist function converts the rotation matrix of
transformationA and transformationB into quaternion objects and uses the quaternion
dist function to calculate the angular distance.

Version History
Introduced in R2022b

See Also
Functions
normalize | interp | rotm | tform | transform | trvec | plotTransforms

Objects
se2 | se3 | so2 | so3

1 Classes
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interp
Interpolate between transformations

Syntax
transformation0 = interp(transformation1,transformation2,points)
transformation0 = interp(transformation1,transformation2,N)

Description
transformation0 = interp(transformation1,transformation2,points) interpolates at
normalized positions points between transformations transformation1 and transformation2.

The function interpolates rotations using a quaternion spherical linear interpolation, and linearly
interpolates translations.

transformation0 = interp(transformation1,transformation2,N) interpolates N steps
between transformations transformation1 and transformation2.

Input Arguments
transformation1 — First transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects, where M is the total number of transformations. If you specify
transformation1 as an array, each element must be of the same type.

Either transformation1 or transformation2 must be a scalar transformation object of the same
type. For example, if transformation1 is an array of se2 objects, transformation2 must be a
scalar se2 object.

transformation2 — Last transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Last transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects, where M is the total number of transformations. If you specify
transformation2 as an array, each element must be of the same type.

Either transformation1 or transformation2 must be a scalar transformation object of the same
type. For example, if transformation1 is an array of se2 objects, transformation2 must be a
scalar se2 object.

points — Normalized positions
N-element row vector of values in range [0, 1]

Normalized positions, specified as an N-element row vector of values in the range [0, 1], where N is
the total number of interpolated positions. Normalized positions 0 and 1 correspond to the first and
last transformations, respectively.
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Example: interp(transformation1,transformation2,0.5) interpolates a transformation
halfway between transformation1 and transformation2.

N — Number of interpolated positions
positive integer

Number of interpolated positions, specified as a positive integer.
Example: interp(transformation1,transformation2,5) interpolates five transformations
between transformation1 and transformation2.

Output Arguments
transformation0 — Interpolated transformations
M-by-N matrix

Interpolated transformations, returned as an M-by-N matrix of the same transformation type as
transformation1 and transformation2, where M is the length of the longer argument between
transformation1 and transformation2, and N is the number of interpolated positions. Each row
represents an interpolated transformation between transformation1 and transformation2.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | normalize | rotm | tform | transform | trvec | plotTransforms

Objects
se2 | se3 | so2 | so3

1 Classes
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mrdivide, ./
Transformation right division

Syntax
transformationC = transformationA*transformationB

Description
transformationC = transformationA*transformationB performs transformation division
between transformation transformationA and transformation transformationB and returns the
quotient, transformation transformationC. This result is equivalent to transformationC =
transformationA*inv(transformationB).

You can use SE3 division to compose a sequence of SE(3) transformations, so that
transformationC represents a transformation where the inverse of transformationB is applied
first, followed by transformationA.

Input Arguments
transformationA — First transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationA as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

transformationB — Last transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Last transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationB as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

Output Arguments
transformationC — Transformation product
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects
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Transformation product, returned as an se2, se3, so2, or so3 object, or as an M-element array of
the same transformation type as transformationA and transformationB. M is the length of the
longer argument between transformationA and transformationB and each row represents the
product between transformationA and transformationB.

Version History
Introduced in R2022b

See Also
Functions
rdivide, ./ | mtimes, * | times, .*

Objects
se2 | se3 | so2 | so3

1 Classes
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mtimes, *
Transformation multiplication

Syntax
transformationC = transformationA*transformationB

Description
transformationC = transformationA*transformationB performs transformation
multiplication between transformation transformationA and transformation transformationB
and returns the product, transformation transformationC.

You can use transformation multiplication to compose a sequence of transformations, so that
transformationC represents a transformation where transformationB is applied first, followed
by transformationA.

Input Arguments
transformationA — First transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationA as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

transformationB — Last transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Last transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationB as an array, each element must be of the same type.

Either transformationA or transformationB must be a scalar transformation object of the same
type. For example, if transformationA is an array of se2 objects, transformationB must be a
scalar se2 object.

Output Arguments
transformationC — Transformation product
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Transformation product, returned as an se2, se3, so2, or so3 object, or as an M-element array of
the same transformation type as transformationA and transformationB. M is the length of the
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longer argument between transformationA and transformationB and each row represents the
product between transformationA and transformationB.

Version History
Introduced in R2022b

See Also
Functions
mrdivide, ./ | rdivide, ./ | times, .*

Objects
se2 | se3 | so2 | so3

1 Classes
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normalize
Normalize transformation matrix

Syntax
transformationN = normalize(transformation)
transformationN = normalize(transformation,Method=normMethod)

Description
transformationN = normalize(transformation) normalizes the rotation of the
transformation transformation and returns a transformation, transformationN, that is
equivalent to transformation, but with normalized rotation.

Note The transformation objects do not automatically normalize their rotations. You must use
normalize each time you need to normalize a transformation. You may need to do this if:

• You specified an unnormalized input transformation at the creation of the transformation object.
• You performed many operations on the transformation objects such as mtimes, *, which may

cause the transformation to become unnormalized due to data type precision.

transformationN = normalize(transformation,Method=normMethod) specifies the
normalization method normMethod that the normalize function uses to normalize
transformation.

Input Arguments
transformation — Transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.
Data Types: single | double

normMethod — Normalization method
"quat" (default) | "cross" | "svd"

Normalization method, specified as one of these options:

• "quat" — Convert the rotation submatrix into a normalized quaternion and then convert the
normalized quaternion back to a transformation object. For more information, see the normalize
of the quaternion object.

• "cross" — Normalize the third column of the rotation submatrix and then determine the other
two columns through cross products.
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• "svd" — Use singular value decomposition to find the closest orthonormal matrix by setting
singular values to 1. This solves the orthogonal Procrustes problem.

Data Types: char | string

Output Arguments
transformationN — Normalized transformation
se2 object | se3 object | so2 object | so3 object

Normalized transformation, returned as an se2, se3, so2, or so3 object.

Tips
Matrices

•

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | rotm | tform | transform | trvec | plotTransforms

Objects
se2 | se3 | so2 | so3 | quaternion

1 Classes
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plot
Draw transformation coordinate frame

Syntax
plot(T)
plot( ___ ,Name=Value)
AX = plot( ___ ,Name=Value)

Description
plot(T) draws a 3-D coordinate frame of transformation T with labeled axes. The x-axis is colored in
red, the y-axis in green, and the z-axis in blue.

plot( ___ ,Name=Value) specifies optional arguments using one or more name-value arguments.
For example, plot(T,AxisLabels="off") hides the xyz labels.

AX = plot( ___ ,Name=Value) returns the axis object, AX, containing the transformation plots.

Input Arguments
T — Transformation
SE3 object | SO3 object | M-element array of SE3 or SO3 objects

Transformation, specified as either an individual SE3 or SO3 object, or as an M-element array of
transformation objects. M is the total number of transformations. Ever transformation in T is plotted
if T is an M-element array.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: plot(T,AxisLabels="off")

AxisLabels — Show axis labels
"on" (default) | "off"

Show axis labels, specified as "off" or "on".
Example: plot(T,AxisLabels="off")
Data Types: char | string

FrameLabel — Name of coordinate frame
"" (default) | string scalar | character vector
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Name of the coordinate frame, specified as a string scalar or character vector.
Example: plot(T,FrameLabel="TF1")
Data Types: char | string

Color — Use uniform color for coordinate frame
"off" (default) | "on"

Use uniform color for coordinate frame, specified as "off" or "on".
Example: plot(T,Color="on")
Data Types: char | string

Output Arguments
AX — Axes handle
Axes object

Axes handle, specified as an Axes object.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
interpolate | normalize | rotm | showdetails | tform | transformPoints | trvec

Objects
SE3 | SO3

1 Classes
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rdivide, ./
Element-wise transformation right division

Syntax
transformationC = transformationA/transformationB

Description
transformationC = transformationA/transformationB performs transformation element-
wise division by dividing each element of transformation transformationA by the corresponding
element of transformation transformationB and returns the quotient, transformation
transformationC.

You can use SE3 division to compose a sequence of SE(3) transformations, so that
transformationC represents a transformation where the inverse of transformationB is applied
first, followed by transformationA.

Input Arguments
transformationA — First transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationA as an array, each element must be of the same type, and
transformationB must be an array of the same type and size as transformationA.

transformationB — Last transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Last transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationB as an array, each element must be of the same type, and
transformationA must be an array of the same type and size as transformationB.

Output Arguments
transformationC — Transformation quotient
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Transformation quotient, returned as an se2, se3, so2, or so3 object, or as an M-element array of
the same transformation type as transformationA and transformationB. M is the length of
transformationA and each row represents the product the corresponding elements between
transformationA and transformationB.
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Version History
Introduced in R2022b

See Also
Functions
mrdivide, ./ | mtimes, * | times, .*

Objects
se2 | se3 | so2 | so3

1 Classes
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rotm
Extract rotation matrix

Syntax
rotationMatrix = rotm(transformation)

Description
rotationMatrix = rotm(transformation) returns the rotation matrix rotationMatrix from
the transformation transformation.

Input Arguments
transformation — Transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.
Data Types: single | double

Output Arguments
rotationMatrix — Rotation matrix
2-by-2-by-M array | 3-by-3-by-M array

Rotation matrix, returned as a 2-by-2-by-M array for 2-D transformations or a 3-by-3-by-M array for 3-
D transformations. M is the total number of transformations.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | tform | transform | trvec | plotTransforms

 rotm

1-367



Objects
se2 | se3 | so2 | so3

1 Classes
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showdetails
Display transformation in compact form

Syntax
showdetails(T)
DETAILS = showdetails( ___ )

Description
showdetails(T) displays the rotational components of the transformation T, on a single line.

DETAILS = showdetails( ___ ) returns details DETAILS instead of printing to the Command
Window.

Input Arguments
T — Transformation
SE3 object | SO3 object | M-element array of SE3 or SO3 objects

Transformation, specified as either an individual SE3 or SO3 object, or as an M-element array of
transformation objects. M is the total number of transformations. Ever transformation in T is
displayed on M rows if T is an M-element array.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: showdetails(T,Sequence="ZYX")

Sequence — Euler angle sequence order
"RPY" (default) | "XYZ" | "ZYX" | "ZYZ"

Euler angle sequence order, specified as "XYZ", "ZYX", "ZYZ", or "RPY". "RPY" is the same
sequence order as "XYZ", but prints as the axis angles as roll, pitch and yaw.
Example: showdetails(T,Sequence="ZYX")
Data Types: char | string

Unit — Rotation units
"deg" (default) | "rad"

Rotation units, specified as "deg" for degrees, or "rad" for radians.
Example: showdetails(T,Unit="rad")
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Data Types: char | string

Output Arguments
DETAILS — Details
string scalar

Transformation details, returned as a string scalar in the same format as it would print to the
Command Window.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
interpolate | normalize | plot | rotm | tform | transformPoints | trvec

Objects
SE3 | SO3

1 Classes
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tform
Extract homogeneous transformation

Syntax
transformationMatrix = tform(transformation)

Description
transformationMatrix = tform(transformation) extracts the homogeneous transformation
matrix transformationMatrix that corresponds to the SE(2) or SE(3) transformation
transformation.

Input Arguments
transformation — Transformation
se2 object | se3 object | M-element array of se2 or se3 objects

Transformation, specified as an se2 object, an se3 object, or an M-element array of se2 or se3
objects. M is the total number of transforms.

If you specify transformation as an array, each element must be of the same type.

Output Arguments
transformationMatrix — Homogeneous transformation matrix
3-by-3-by-M array | 4-by-4-by-M array

Homogeneous transformation matrix, returned as a 3-by-3-by-M array for se2 objects or a 4-by-4-by-
M array for se3 objects. M is the total number of transformations.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | rotm | transform | trvec

Objects
se2 | se3
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times, .*
Transformation element-wise multiplication

Syntax
transformationC = transformationA.*transformationB

Description
transformationC = transformationA.*transformationB multiplies transformations element-
by-element by multiplying each element of transformation transformationA with the
corresponding element of transformation transformationB and returns the product,
transformation transformationC.

You can use transformation multiplication to compose a sequence of transformations, so that
transformationC represents a transformation where transformationB is applied first, followed
by transformationA.

Input Arguments
transformationA — First transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

First transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationA as an array, each element must be of the same type, and
transformationB must be an array of the same type and size as transformationA.

transformationB — Last transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Last transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformationB as an array, each element must be of the same type, and
transformationA must be an array of the same type and size as transformationB.

Output Arguments
transformationC — Transformation product
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Transformation product, returned as an se2, se3, so2, or so3 object, or as an M-element array of
the same transformation type as transformationA and transformationB. M is the length of
transformationA and each row represents the product the corresponding elements between
transformationA and transformationB.

1 Classes
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Version History
Introduced in R2022b

See Also
Functions
mrdivide, ./ | rdivide, ./ | mtimes, *

Objects
se2 | se3 | so2 | so3
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transform
Apply rigid body transformation to points

Syntax
tpoints = transform(transformation,points)
tpoints = transform( ___ ,isCol=format)

Description
tpoints = transform(transformation,points) applies the rigid body transformation
transformation to the input points points, and returns the transformed points tpoints.

tpoints = transform( ___ ,isCol=format) sets the expected format of the input points
points to be either column-wise or row-wise by using the logical flag format in addition to the input
arguments from the previous syntax.

Input Arguments
transformation — Transformation
se2 object | se3 object | so2 object | so3 object | M-element array of transformation objects

Transformation, specified as an se2, se3, so2, or so3 object, or as an M-element array of
transformation objects. M is the total number of transformations.

If you specify transformation as an array, each element must be of the same type.
Data Types: single | double

points — Points to transform
N-by-D-by-M array | D-by-N-by-M array

Points to transform, specified as an N-by-D-by-M array, where:

• D is the dimension of the transformation, defined as 2 for 2-D transformations and 3 for 3-D
transformations.

• N is the total number of input points to transform.
• M is the total number of transforms to perform on each point.

For 2-D transformations, each row specifies a point in the form [X Y]. For 3-D transformations, each
row specifies a point in the form [X Y Z].

If you specify format as true, then you must specify points as a D-by-N-by-M array, where each
column specifies a point.
Data Types: single | double

format — Point format
false or 0 (default) | true or 1
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Point format, specified as a logical 0 (false) or 1 (true). If you specify this argument as true, you
must specify the points in points as columns. Otherwise, specify points as rows.
Example: isCol=true
Data Types: logical

Output Arguments
tpoints — Transformed points
N-by-D-by-M array | D-by-N-by-M array

Transformed points, returned as an N-by-D-by-M array, where:

• D is the dimension of the transformation, defined as 2 for 2-D transformations and 3 for 3-D
transformations.

• N is the total number of input points to transform.
• M is the total number of transforms to perform on each point.

For 2-D transformations, each row specifies a point in the form [X Y]. For 3-D transformations, each
row specifies a point in the form [X Y Z].

If you specify format as true, tpoints is returned as a D-by-N-by-M array, where each column
specifies a point.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | rotm | tform | trvec | plotTransforms

Objects
se2 | se3 | so2 | so3
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trvec
Extract translation vector

Syntax
translationVector = trvec(transformation)

Description
translationVector = trvec(transformation) extracts the translation vector
translationVector of the SE(2) or SE(3) transformation transformation.

Input Arguments
transformation — Transformation
se2 object | se3 object | M-element array of se2 or se3 objects

Transformation, specified as an se2 object, an se3 object, or an M-element array of se2 or se3
objects. M is the total number of transforms.

If you specify transformation as an array, each element must be of the same type.

Output Arguments
translationVector — Translation vector
M-by-2 matrix | M-by-3 matrix

Translation vector, returned as an M-by-2 matrix for se2 objects or an M-by-3 matrix for se3 objects.
M is the total number of transformations, and each row is a translation vector in the form [X Y] for 2-
D transformations or [X Y Z] for 3-D transformations.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | interp | normalize | rotm | tform | transform | plotTransforms

Objects
se2 | se3

1 Classes

1-376



stateEstimatorPF
Create particle filter state estimator

Description
The stateEstimatorPF object is a recursive, Bayesian state estimator that uses discrete particles
to approximate the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two steps:
prediction and correction. The prediction step uses the previous state to predict the current state
based on a given system model. The correction step uses the current sensor measurement to correct
the state estimate. The algorithm periodically redistributes, or resamples, the particles in the state
space to match the posterior distribution of the estimated state.

The estimated state consists of state variables. Each particle represents a discrete state hypothesis of
these state variables. The set of all particles is used to help determine the final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and measurement
noise can follow arbitrary non-Gaussian distributions.

For more information on the particle filter workflow and setting specific parameters, see:

• “Particle Filter Workflow”
• “Particle Filter Parameters”

Creation

Syntax
pf = stateEstimatorPF

Description

pf = stateEstimatorPF creates an object that enables the state estimation for a simple system
with three state variables. Use the initialize method to initialize the particles with a known mean
and covariance or uniformly distributed particles within defined bounds. To customize the particle
filter’s system and measurement models, modify the StateTransitionFcn and
MeasurementLikelihoodFcn properties.

After you create the object, use initialize to initialize the NumStateVariables and
NumParticles properties. The initialize function sets these two properties based on your
inputs.

Properties
NumStateVariables — Number of state variables
3 (default) | scalar

 stateEstimatorPF

1-377



This property is read-only.

Number of state variables, specified as a scalar. This property is set based on the inputs to the
initialize method. The number of states is implicit based on the specified matrices for initial state
and covariance.

NumParticles — Number of particles used in the filter
1000 (default) | scalar

This property is read-only.

Number of particles using in the filter, specified as a scalar. You can specify this property only by
calling the initialize method.

StateTransitionFcn — Callback function for determining the state transition between
particle filter steps
function handle

Callback function for determining the state transition between particle filter steps, specified as a
function handle. The state transition function evolves the system state for each particle. The function
signature is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

The callback function accepts at least two input arguments: the stateEstimatorPF object, pf, and
the particles at the previous time step, prevParticles. These specified particles are the
predictParticles returned from the previous call of the object. predictParticles and
prevParticles are the same size: NumParticles-by-NumStateVariables.

You can also use varargin to pass in a variable number of arguments from the predict function.
When you call:

predict(pf,arg1,arg2)

MATLAB essentially calls stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

MeasurementLikelihoodFcn — Callback function calculating the likelihood of sensor
measurements
function handle

Callback function calculating the likelihood of sensor measurements, specified as a function handle.
Once a sensor measurement is available, this callback function calculates the likelihood that the
measurement is consistent with the state hypothesis of each particle. You must implement this
function based on your measurement model. The function signature is:

function likelihood = measurementLikelihoodFcn(PF,predictParticles,measurement,varargin)

The callback function accepts at least three input arguments:

1 pf – The associated stateEstimatorPF object
2 predictParticles – The particles that represent the predicted system state at the current

time step as an array of size NumParticles-by-NumStateVariables
3 measurement – The state measurement at the current time step
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You can also use varargin to pass in a variable number of arguments. These arguments are passed
by the correct function. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,predictParticles,measurement,arg1,arg2)

The callback needs to return exactly one output, likelihood, which is the likelihood of the given
measurement for each particle state hypothesis.

IsStateVariableCircular — Indicator if state variables have a circular distribution
[0 0 0] (default) | logical array

Indicator if state variables have a circular distribution, specified as a logical array. Circular (or
angular) distributions use a probability density function with a range of [-pi,pi]. If the object has
multiple state variables, then IsStateVariableCircular is a row vector. Each vector element
indicates if the associated state variable is circular. If the object has only one state variable, then
IsStateVariableCircular is a scalar.

ResamplingPolicy — Policy settings that determine when to trigger resampling
object

Policy settings that determine when to trigger resampling, specified as an object. You can trigger
resampling either at fixed intervals, or you can trigger it dynamically, based on the number of
effective particles. See resamplingPolicyPF for more information.

ResamplingMethod — Method used for particle resampling
'multinomial' (default) | 'residual' | 'stratified' | 'systematic'

Method used for particle resampling, specified as 'multinomial', 'residual', 'stratified',
and 'systematic'.

StateEstimationMethod — Method used for state estimation
'mean' (default) | 'maxweight'

Method used for state estimation, specified as 'mean' and 'maxweight'.

Particles — Array of particle values
NumParticles-by-NumStateVariables matrix

Array of particle values, specified as a NumParticles-by-NumStateVariables matrix. Each row
corresponds to the state hypothesis of a single particle.

Weights — Particle weights
NumParticles-by-1 vector

Particle weights, specified as a NumParticles-by-1 vector. Each weight is associated with the
particle in the same row in the Particles property.

State — Best state estimate
vector

This property is read-only.
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Best state estimate, returned as a vector with length NumStateVariables. The estimate is extracted
based on the StateEstimationMethod property.

State Covariance — Corrected system covariance
N-by-N matrix | []

This property is read-only.

Corrected system variance, returned as an N-by-N matrix, where N is equal to the
NumStateVariables property. The corrected state is calculated based on the
StateEstimationMethod property and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the property is set to [].

Object Functions
initialize Initialize the state of the particle filter
getStateEstimate Extract best state estimate and covariance from particles
predict Predict state of robot in next time step
correct Adjust state estimate based on sensor measurement

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';
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Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Estimate Robot Position in a Loop Using Particle Filter

Use the stateEstimatorPF object to track a robot as it moves in a 2-D space. The measured
position has random noise added. Using predict and correct, track the robot based on the
measurement and on an assumed motion model.

Initialize the particle filter and specify the default state transition function, the measurement
likelihood function, and the resampling policy.

pf = stateEstimatorPF;
pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Sample 1000 particles with an initial position of [0 0] and unit covariance.

initialize(pf,1000,[0 0],eye(2));

Prior to estimation, define a sine wave path for the dot to follow. Create an array to store the
predicted and estimated position. Define the amplitude of noise.

t = 0:0.1:4*pi;
dot = [t; sin(t)]';
robotPred = zeros(length(t),2);
robotCorrected = zeros(length(t),2);
noise = 0.1;

Begin the loop for predicting and correcting the estimated position based on measurements. The
resampling of particles occurs based on theResamplingPolicy property. The robot moves based on
a sine wave function with random noise added to the measurement.

for i = 1:length(t)
    % Predict next position. Resample particles if necessary.
    [robotPred(i,:),robotCov] = predict(pf);
    % Generate dot measurement with random noise. This is
    % equivalent to the observation step.
    measurement(i,:) = dot(i,:) + noise*(rand([1 2])-noise/2);
    % Correct position based on the given measurement to get best estimation.
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    % Actual dot position is not used. Store corrected position in data array.
    [robotCorrected(i,:),robotCov] = correct(pf,measurement(i,:));
end

Plot the actual path versus the estimated position. Actual results may vary due to the randomness of
particle distributions.

plot(dot(:,1),dot(:,2),robotCorrected(:,1),robotCorrected(:,2),'or')
xlim([0 t(end)])
ylim([-1 1])
legend('Actual position','Estimated position')
grid on

The figure shows how close the estimate state matches the actual position of the robot. Try tuning the
number of particles or specifying a different initial position and covariance to see how it affects
tracking over time.

Version History
Introduced in R2016a

stateEstimatorPF was renamed
Behavior change in future release

The stateEstimatorPF object was renamed from robotics.ParticleFilter. Use
stateEstimatorPF for all object creation.
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References
[1] Arulampalam, M.S., S. Maskell, N. Gordon, and T. Clapp. "A Tutorial on Particle Filters for Online

Nonlinear/Non-Gaussian Bayesian Tracking." IEEE Transactions on Signal Processing. Vol.
50, No. 2, Feb 2002, pp. 174-188.

[2] Chen, Z. "Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond." Statistics. Vol.
182, No. 1, 2003, pp. 1-69.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
resamplingPolicyPF | initialize | getStateEstimate | predict | correct

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
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taskSpaceMotionModel
Model rigid body tree motion given task-space reference inputs

Description
The taskSpaceMotionModel object models the closed-loop task-space motion of a manipulator,
specified as a rigid body tree object. The motion model behavior is defined by the MotionType
property.

For more details about the equations of motion, see “Task-Space Motion Model”.

Creation

Syntax
motionModel = taskSpaceMotionModel

motionModel = taskSpaceMotionModel("RigidBodyTree",tree)

motionModel = taskSpaceMotionControlModel(Name,Value)

Description

motionModel = taskSpaceMotionModel creates a motion model for a default two-joint
manipulator.

motionModel = taskSpaceMotionModel("RigidBodyTree",tree) creates a motion model for
the specified rigidBodyTree object.

motionModel = taskSpaceMotionControlModel(Name,Value) sets additional properties
specified as name-value pairs. You can specify multiple properties in any order.

Properties
RigidBodyTree — Rigid body tree robot model
rigidBodyTree object

Rigid body tree robot model, specified as a rigidBodyTree object that defines the inertial and
kinematic properties of the manipulator.

EndEffectorName — End effector body
'tool' (default) | string scalar | character vector

This property defines the body that will be used as the end effector, and for which the task space
motion is defined. The property must correspond to a body name in the rigidBodyTree object of the
RigidBodyTree property. If the rigid body tree is updated without also updating the end effector, the
body with the highest index becomes the end-effector body by default.
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Kp — Proportional gain for PD Control
500*eye(6) (default) | 6-by-6 matrix

Proportional gain for PD control, specified as a 6-by-6 matrix.

Kd — Derivative gain for PD control
100*eye(6) (default) | 6-by-6 matrix

Derivative gain for proportional-derivative (PD) control, specified as a 6-by-6 matrix.

JointDamping — Joint damping constant
ones(1,n) (default) | n-element vector

Joint damping constant, specified as an n-element vector, where n is the number of non-fixed joints in
the robot model specified by the Rigid Body Tree property. Joint damping units are N/(m/s) or N/
(rad/s) for prismatic and revolute joints, respectively.

MotionType — Type of motion computed by the motion model
"PDControl" (default)

Type of motion, specified as "PDControl", which uses proportional-derivative (PD) control mapped
to the joints via a Jacobian-Transpose controller. The control is based on the specified Kp and Kd
properties.

Object Functions
derivative Time derivative of manipulator model states
updateErrorDynamicsFromStep Update values of NaturalFrequency and DampingRatio properties

given desired step response

Examples

Create Task-Space Motion Model

This example shows how to create and use a taskSpaceMotionModel object for a manipulator robot
arm in task-space.

Create the Robot

robot = loadrobot("kinovaGen3","DataFormat","column","Gravity",[0 0 -9.81]);

Set Up the Simulation

Set the time span to be 1 second with a timestep size of 0.02 seconds. Set the initial state to the home
configuration of the robot, with a velocity of zero.

tspan = 0:0.02:1;
initialState = [homeConfiguration(robot);zeros(7,1)];

Define a reference state with a target position and zero velocity.

refPose = trvec2tform([0.6 -.1 0.5]);
refVel = zeros(6,1);
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Create the Motion Model

Model the behavior as a system under proportional-derivative (PD) control.

motionModel = taskSpaceMotionModel("RigidBodyTree",robot,"EndEffectorName","EndEffector_Link");

Simulate the Robot

Simulate the behavior over 1 second using a stiff solver to more efficiently capture the robot
dynamics. Using ode15s enables higher precision around the areas with a high rate of change.

[t,robotState] = ode15s(@(t,state)derivative(motionModel,state,refPose,refVel),tspan,initialState);

Plot the Response

Plot the robot's initial position and mark the target with an X.

figure
show(robot,initialState(1:7));
hold all
plot3(refPose(1,4),refPose(2,4),refPose(3,4),"x","MarkerSize",20)

Observe the response by plotting the robot in a 5 Hz loop.

r = rateControl(5);
for i = 1:size(robotState,1)
    show(robot,robotState(i,1:7)',"PreservePlot",false);
    waitfor(r);
end
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Version History
Introduced in R2019b

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Upper Saddle River, NJ: Pearson

Education, 2005.

[2] Spong, Mark W., Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control.
Hoboken, NJ: Wiley, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
jointSpaceMotionModel

Blocks
Task Space Motion Model
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Functions
derivative

Topics
“Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator”
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transformTree
Define coordinate frames and relative transformations

Description
The transformTree object contains an organized tree structure for coordinate frames and their
relative transformations over time. The object stores the relative transformations between children
frames and their parents. You can specify a timestamped transform for frames and query the relative
transformations between different frames in the tree. The object interpolates intermediate
timestamps using a constant velocity assumption for linear motion, and spherical linear interpolation
(SLERP) for angular motion. Otherwise, the relative transformations are kept constant past the range
of the timestamps specified. Times prior to the first timestamp return NaN.

Use the updateTransform function to add timestamps to the tree by defining the parent-to-child
relationships. Query specific transformations at given timestamps using getTransform and display
the frame relationships using show.

Creation

Syntax
frames = transformTree
frames = transformTree(baseName)
frames = transformTree(baseName,numFrames)
frames = transformTree(baseName,numFrames,numTransforms)
frames = transformTree(baseName,numFrames,numTransforms,rootTime)

Description

frames = transformTree creates a transformation tree data structure with a single frame,
"root", with the maximum number of frames and timestamped transforms per frame, set to 10.

frames = transformTree(baseName) specifies the name of the root frame as a string or
character vector.

frames = transformTree(baseName,numFrames) additionally sets the MaxNumFrames
property, which defines the max number of named frames in the object.

frames = transformTree(baseName,numFrames,numTransforms) additionally sets the
MaxNumTransforms property, which defines the max number of timestamped transforms per frame
name.

frames = transformTree(baseName,numFrames,numTransforms,rootTime) additionally
specifies the timestamp of the initial baseName frame as a scalar time in seconds.
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Properties
MaxNumFrames — Maximum number of frames in tree
10 (default) | positive integer

Maximum number of frames in the tree, specified as a positive integer. Each frame has associated
timestamped transforms that define the state of the frame at those specific times.
Data Types: double

MaxNumTransforms — Maximum number of timestamped transforms per frame
10 (default) | positive integer

Maximum number of timestamped transforms per frame, specified as a positive integer. This property
sets an upper limit on the number of timestamped transforms the object can store for each frame
named in the structure. A transformTree object with MaxNumFrames and MaxNumTransforms set
to 10 can store a maximum of 100 transformations with 10 for each frame.
Data Types: double

NumFrames — Current number of coordinate frames stored
1 (default) | positive integer

Current number of coordinate frames stored, specified as a positive integer. The object starts with a
single root frame, and new frames and specific timestamps are added using updateTransform
function.
Data Types: double

Object Functions
getGraph Graph object representing tree structure
getTransform Get relative transform between frames
info List all frame names and stored timestamps
removeTransform Remove frame transform relative to its parent
show Show transform tree
updateTransform Update frame transform relative to its parent

Version History
Introduced in R2022a

See Also
Objects
robotScenario

Functions
getGraph | getTransform | info | removeTransform | show | updateTransform
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unicycleKinematics
Unicycle vehicle model

Description
unicycleKinematics creates a unicycle vehicle model to simulate simplified car-like vehicle
dynamics. The state of the vehicle is defined as a three-element vector, [x y theta], with a global xy-
position, specified in meters, and a vehicle heading angle, theta, specified in radians. This model
approximates a unicycle vehicle with a given wheel radius, WheelRadius, that can spin in place
according to a heading angle, theta. To compute the time derivative states for the model, use the
derivative function with input commands and the current robot state.

Creation

Syntax
kinematicModel = unicycleKinematics

kinematicModel = unicycleKinematics(Name,Value)

Description

kinematicModel = unicycleKinematics creates a unicycle kinematic model object with default
property values.

kinematicModel = unicycleKinematics(Name,Value) sets additional properties to the
specified values. You can specify multiple properties in any order.

Properties
WheelRadius — Wheel radius of vehicle
0.1 (default) | positive numeric scalar

The wheel radius of the vehicle, specified in meters.

WheelSpeedRange — Range of vehicle wheel speeds
[-Inf Inf] (default) | two-element vector
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The vehicle speed range is a two-element vector that provides the minimum and maximum vehicle
speeds, [MinSpeed MaxSpeed], specified in meters per second.

VehicleInputs — Type of motion inputs for vehicle
"WheelSpeedHeadingRate" (default) | character vector | string scalar

The VehicleInputs property specifies the format of the model input commands when using the
derivative function. Options are specified as one of the following strings:

• "WheelSpeedHeadingRate" — Wheel speed and heading angular velocity, specified in radians
per second.

• "VehicleSpeedHeadingRate" — Vehicle speed and heading angular velocity, specified in
radians per second.

Object Functions
derivative Time derivative of vehicle state

Examples

Plot Path of Unicycle Kinematic Robot

Create a Robot

Define a robot and set the initial starting position and orientation.

kinematicModel = unicycleKinematics;
initialState = [0 0 0];

Simulate Robot Motion

Set the timespan of the simulation to 1 s with 0.05 s timesteps and the input commands to 10 m/s and
left turn. Simulate the motion of the robot by using the ode45 solver on the derivative function.

tspan = 0:0.05:1;
inputs = [10 1]; %Constant speed and turning left
[t,y] = ode45(@(t,y)derivative(kinematicModel,y,inputs),tspan,initialState);

Plot path

figure
plot(y(:,1),y(:,2))

1 Classes

1-392



Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
bicycleKinematics | ackermannKinematics | differentialDriveKinematics

Blocks
Unicycle Kinematic Model

Functions
derivative
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Topics
“Simulate Different Kinematic Models for Mobile Robots”
“Mobile Robot Kinematics Equations”
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workspaceGoalRegion
Define workspace region of end-effector goal poses

Description
The workspaceGoalRegion object defines a region for valid end-effector goal poses. To sample
poses within the bounds of the goal region, use the sample object function. You can also visualize the
bounds you define using the show object function.

The object is typically used with rapidly exploring random tree (RRT) planners like the
manipulatorRRT object. The sample generates alternative goal states to increase the likelihood of
finding valid paths.

The key elements of the goal region are defined as object properties:

• ReferencePose — Pose of the reference frame in the world frame. The bounds and offset pose are
relative to this frame.

• EndEffectorOffsetPose — Offset pose applied to any pose sampled in the reference frame. Use this
offset if the end effector needs to be positioned differently based on grasping or other geometric
restrictions.

• Bounds — Bounds of the region as a 6-by-2 matrix with the minimum and maximum values for the
XYZ-position and ZYX Euler angle orientation, in respective column vectors.
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Creation

Syntax
goalRegion = workspaceGoalRegion(EndEffectorName)
goalRegion = workspaceGoalRegion(EndEffectorName,Name,Value)

Description

goalRegion = workspaceGoalRegion(EndEffectorName) creates a default workspace goal
region object for the specified end-effector name. Sets the EndEffectorName property.

goalRegion = workspaceGoalRegion(EndEffectorName,Name,Value) sets additional
properties on page 1-396 on the object using name-value pairs. For example,
workSpaceGoalRegion("endEffector","Bounds",limits) creates a workspace goal region
with the Bounds property specified as a matrix.

Properties
EndEffectorName — Name of end effector
string scalar

Name of the end effector, specified as a string scalar.
Example: "eeTool"
Data Types: string

ReferencePose — Pose of reference frame
eye(4) (default) | 4-by-4 homogeneous transform

Pose of the reference frame, specified as a 4-by-4 homogeneous transformation matrix. The Bounds
property defines the limits of the goal region relative to this reference frame.
Example: trvect2tform([1 2 3])
Data Types: double

EndEffectorOffsetPose — End-effector offset pose applied to poses sampled in reference
frame
eye(4) (default) | 4-by-4 homogeneous transform

End-effector offset pose applied to poses sampled in the reference frame, specified as a 4-by-4
homogeneous transformation matrix. This offset is applied to all poses sampled. Use this offset if the
end effector needs to be positioned differently based on grasping or other geometric restrictions.
Example: trvect2tform([0.5 1 0])
Example: eul2tform([pi/2 0 -pi/4])
Data Types: double

Bounds — Position and orientation bounds
zeros(6,2) (default) | 6-by-2 matrix
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Position and orientation bounds on pose samples, specified as a 6-by-2 matrix with the minimum and
maximum values in column vectors.

wgr.Bounds = [ minX  maxX;
               minY  maxY;
               minZ  maxZ;
               minEulZ  maxEulZ;
               minEulY  maxEulY;
               minEulX  maxEulX ];

The first three rows are the XYZ-position bounds. The last three rows are the orientation bounds,
which are specified as intrinsic ZYX Euler angles. Orientation is based on the right-hand rule, with
counterclockwise rotations about the respective axes being positive and measured in radians. During
sampling, a pose is uniformly sampled within each of these bounds to obtain a sample pose in the
reference frame.
Data Types: double

Object Functions
sample Sample end-effector poses in world frame
show Visualize workspace bounds, reference frame, and offset frame

Examples

Plan Path To A Workspace Goal Region

Specify a goal region in your workspace and plan a path within those bounds. The
workspaceGoalRegion object defines the bounds on the XYZ-position and ZYX Euler orientation of
the robot end effector. The manipulatorRRT object plans a path based on that goal region and
samples random poses within the bounds.

Load an existing robot model as a rigidBodyTree object.

robot = loadrobot("kinovaGen3", "DataFormat", "row");
ax = show(robot);

 workspaceGoalRegion

1-397



Create Path Planner

Create a rapidly-exploring random tree (RRT) path planner for the robot. This example uses an empty
environment, but this workflow also works well with cluttered environments. You can add collision
objects to the environment like the collisionBox or collisionMesh object.

planner = manipulatorRRT(robot,{});
planner.SkippedSelfCollisions="parent";

Define Goal Region

Create a workspace goal region using the end-effector body name of the robot.

Define the goal region parameters for your workspace. The goal region includes a reference pose,
XYZ-position bounds, and orientation limits on the ZYX Euler angles. This example specifies bounds
on the XY-plane in meters and allows rotation about the Z-axis in radians.

goalRegion = workspaceGoalRegion(robot.BodyNames{end}); 
goalRegion.ReferencePose = trvec2tform([0.5 0.5 0.2]);
goalRegion.Bounds(1, :) = [-0.2 0.2];    % X Bounds
goalRegion.Bounds(2, :) = [-0.2 0.2];    % Y Bounds
goalRegion.Bounds(4, :) = [-pi/2 pi/2];  % Rotation about the Z-axis

You can also apply a fixed offset to all poses sampled within the region. This offset can account for
grasping tools or variations in dimensions within your workspace. For this example, apply a fixed
transformation that places the end effector 5 cm above the workspace.
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goalRegion.EndEffectorOffsetPose = trvec2tform([0 0 0.05]);
hold on
show(goalRegion);

Plan Path To Goal Region

Plan a path to the goal region from the robot's home configuration. Due to the randomness in the RRT
algorithm, this example sets the rng seed to ensure repeatable results.

rng(0)
path = plan(planner,homeConfiguration(robot),goalRegion);

Show the robot executing the path. To visualize a more realistic path, interpolate points between path
configurations.

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot,interpConfigurations(i,:),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1],...
        'CameraViewAngle',5)
  
    drawnow
end
hold off
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Adjust End-effector Pose

Notice that the robot arm approaches the workspace from the bottom. To flip the orientation of the
final position, add a pi rotation to the Y-axis for the reference pose.

goalRegion.EndEffectorOffsetPose = ... 
    goalRegion.EndEffectorOffsetPose*eul2tform([0 pi 0],"ZYX");

Replan the path and visualize the robot motion again. The robot now approaches from the top.

hold on
show(goalRegion);
path = plan(planner,homeConfiguration(robot),goalRegion);

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot, interpConfigurations(i, :),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1])
    drawnow;
end
hold off
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Version History
Introduced in R2021a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
manipulatorRRT | sample | show
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waypointTrajectory
Waypoint trajectory generator

Description
The waypointTrajectory System object generates trajectories using specified waypoints. When
you create the System object, you can optionally specify the time of arrival, velocity, and orientation
at each waypoint. See “Algorithms” on page 1-432 for more details.

To generate a trajectory from waypoints:

1 Create the waypointTrajectory object and set its properties.
2 Call the object as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
trajectory = waypointTrajectory
trajectory = waypointTrajectory(Waypoints,TimeOfArrival)
trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value)

Description

trajectory = waypointTrajectory returns a System object, trajectory, that generates a
trajectory based on default stationary waypoints.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival) specifies the Waypoints
that the generated trajectory passes through and the TimeOfArrival at each waypoint.

trajectory = waypointTrajectory(Waypoints,TimeOfArrival,Name,Value) sets each
creation argument or property Name to the specified Value. Unspecified properties and creation
arguments have default or inferred values.
Example: trajectory = waypointTrajectory([10,10,0;20,20,0;20,20,10],[0,0.5,10])
creates a waypoint trajectory System object, trajectory, that starts at waypoint [10,10,0], and
then passes through [20,20,0] after 0.5 seconds and [20,20,10] after 10 seconds.

Creation Arguments

Creation arguments are properties which are set during creation of the System object and cannot be
modified later. If you do not explicitly set a creation argument value, the property value is inferred.

If you specify any creation argument, then you must specify both the Waypoints and TimeOfArrival
creation arguments. You can specify Waypoints and TimeOfArrival as value-only arguments or
name-value pairs.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Sample rate of trajectory (Hz)
100 (default) | positive scalar

Sample rate of trajectory in Hz, specified as a positive scalar.

Tunable: Yes
Data Types: double

SamplesPerFrame — Number of samples per output frame
1 (default) | positive scalar integer

Number of samples per output frame, specified as a positive scalar integer.

Tunable: Yes
Data Types: double

Waypoints — Positions in the navigation coordinate system (m)
N-by-3 matrix

Positions in the navigation coordinate system in meters, specified as an N-by-3 matrix. The columns of
the matrix correspond to the first, second, and third axes, respectively. The rows of the matrix, N,
correspond to individual waypoints.

Tip To let the trajectory wait at a specific waypoint, simply repeat the waypoint coordinate in two
consecutive rows.

Dependencies

To set this property, you must also set valid values for the TimeOfArrival property.
Data Types: double

TimeOfArrival — Time at each waypoint (s)
N-element column vector of nonnegative increasing numbers

Time corresponding to arrival at each waypoint in seconds, specified as an N-element column vector.
The first element of TimeOfArrival must be 0. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.
Dependencies

To set this property, you must also set valid values for the Waypoints property.
Data Types: double
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Velocities — Velocity in navigation coordinate system at each waypoint (m/s)
N-by-3 matrix

Velocity in the navigation coordinate system at each waypoint in meters per second, specified as an
N-by-3 matrix. The columns of the matrix correspond to the first, second, and third axes, respectively.
The number of samples, N, must be the same as the number of samples (rows) defined by
Waypoints.

If the velocity is specified as a non-zero value, the object automatically calculates the course of the
trajectory. If the velocity is specified as zero, the object infers the course of the trajectory from
adjacent waypoints.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

Course — Horizontal direction of travel (degree)
N-element real vector

Horizontal direction of travel, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, course is inferred from the waypoints.

Dependencies

To set this property, the Velocities property must not be specified in object creation.
Data Types: double

GroundSpeed — Groundspeed at each waypoint (m/s)
N-element real vector

Groundspeed at each waypoint, specified as an N-element real vector in m/s. If the property is not
specified, it is inferred from the waypoints. The number of samples, N, must be the same as the
number of samples (rows) defined by Waypoints.

• To render forward motion, specify positive ground speed values.
• To render backward motion, specify negative ground speed values.
• To render reverse motion, separate positive and negative groundspeed values by a zero

groundspeed value.

Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

ClimbRate — Climb rate at each waypoint (m/s)
N-element real vector

Climb Rate at each waypoint, specified as an N-element real vector in degrees. The number of
samples, N, must be the same as the number of samples (rows) defined by Waypoints. If neither
Velocities nor Course is specified, climb rate is inferred from the waypoints.
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Dependencies

To set this property, the Velocities property must not be specified at object creation.
Data Types: double

Orientation — Orientation at each waypoint
N-element quaternion column vector | 3-by-3-by-N array of real numbers

Orientation at each waypoint, specified as an N-element quaternion column vector or 3-by-3-by-N
array of real numbers. Each quaternion must have a norm of 1. Each 3-by-3 rotation matrix must be
an orthonormal matrix. The number of quaternions or rotation matrices, N, must be the same as the
number of samples (rows) defined by Waypoints.

If Orientation is specified by quaternions, the underlying class must be double.

Dependencies

To set this property, you must also set valid values for the Waypoints and TimeOfArrival properties.
Data Types: double

AutoPitch — Align pitch angle with direction of motion
false (default) | true

Align pitch angle with the direction of motion, specified as true or false. When specified as true,
the pitch angle automatically aligns with the direction of motion. If specified as false, the pitch
angle is set to zero (level orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

AutoBank — Align roll angle to counteract centripetal force
false (default) | true

Align roll angle to counteract the centripetal force, specified as true or false. When specified as
true, the roll angle automatically counteracts the centripetal force. If specified as false, the roll
angle is set to zero (flat orientation).

Dependencies

To set this property, the Orientation property must not be specified at object creation.

ReferenceFrame — Reference frame of trajectory
'NED' (default) | 'ENU'

Reference frame of the trajectory, specified as 'NED' (North-East-Down) or 'ENU' (East-North-Up).

Usage

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
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Description

[position,orientation,velocity,acceleration,angularVelocity] = trajectory()
outputs a frame of trajectory data based on specified creation arguments and properties.

Output Arguments

position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the SamplesPerFrame property.
Data Types: double

velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the SamplesPerFrame property.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to waypointTrajectory
waypointInfo Get waypoint information table
lookupPose Obtain pose information for certain time
perturbations Perturbation defined on object
perturb Apply perturbations to object

Common to All System Objects
clone Create duplicate System object
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
isDone End-of-data status

Examples

Create Default waypointTrajectory

trajectory = waypointTrajectory

trajectory = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
     ReferenceFrame: 'NED'

Inspect the default waypoints and times of arrival by calling waypointInfo. By default, the
waypoints indicate a stationary position for one second.

waypointInfo(trajectory)

ans=2×2 table
    TimeOfArrival     Waypoints 
    _____________    ___________
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          0          0    0    0
          1          0    0    0

Create Square Trajectory

Create a square trajectory and examine the relationship between waypoint constraints, sample rate,
and the generated trajectory.

Create a square trajectory by defining the vertices of the square. Define the orientation at each
waypoint as pointing in the direction of motion. Specify a 1 Hz sample rate and use the default
SamplesPerFrame of 1.

waypoints = [0,0,0; ... % Initial position
             0,1,0; ...
             1,1,0; ...
             1,0,0; ...
             0,0,0];    % Final position

toa = 0:4; % time of arrival

orientation = quaternion([0,0,0; ...
                          45,0,0; ...
                          135,0,0; ...
                          225,0,0; ...
                          0,0,0], ...
                          'eulerd','ZYX','frame');

trajectory = waypointTrajectory(waypoints, ...
    'TimeOfArrival',toa, ...
    'Orientation',orientation, ...
    'SampleRate',1);

Create a figure and plot the initial position of the platform.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on
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In a loop, step through the trajectory to output the current position and current orientation. Plot the
current position and log the orientation. Use pause to mimic real-time processing.

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off
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Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
plot(toa,eulerAngles(:,1),'ko', ...
     toa,eulerAngles(:,2),'bd', ...
     toa,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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So far, the trajectory object has only output the waypoints that were specified during construction. To
interpolate between waypoints, increase the sample rate to a rate faster than the time of arrivals of
the waypoints. Set the trajectory sample rate to 100 Hz and call reset.

trajectory.SampleRate = 100;
reset(trajectory)

Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')
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   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end
hold off

The trajectory output now appears circular. This is because the waypointTrajectory System
object™ minimizes the acceleration and angular velocity when interpolating, which results in
smoother, more realistic motions in most scenarios.

Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time. The orientation is also interpolated.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
plot(t,eulerAngles(:,1),'ko', ...
     t,eulerAngles(:,2),'bd', ...
     t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis','Rotation around Y-axis','Rotation around X-axis')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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The waypointTrajectory algorithm interpolates the waypoints to create a smooth trajectory. To
return to the square trajectory, provide more waypoints, especially around sharp changes. To track
corresponding times, waypoints, and orientation, specify all the trajectory info in a single matrix.

               % Time, Waypoint, Orientation
trajectoryInfo = [0,   0,0,0,    0,0,0; ... % Initial position
                  0.1, 0,0.1,0,  0,0,0; ...

                  0.9, 0,0.9,0,  0,0,0; ...
                  1,   0,1,0,    45,0,0; ...
                  1.1, 0.1,1,0,  90,0,0; ...

                  1.9, 0.9,1,0,  90,0,0; ...
                  2,   1,1,0,    135,0,0; ...
                  2.1, 1,0.9,0,  180,0,0; ...

                  2.9, 1,0.1,0,  180,0,0; ...
                  3,   1,0,0,    225,0,0; ...
                  3.1, 0.9,0,0,  270,0,0; ...

                  3.9, 0.1,0,0,  270,0,0; ...
                  4,   0,0,0,    270,0,0];    % Final position

trajectory = waypointTrajectory(trajectoryInfo(:,2:4), ...
    'TimeOfArrival',trajectoryInfo(:,1), ...
    'Orientation',quaternion(trajectoryInfo(:,5:end),'eulerd','ZYX','frame'), ...
    'SampleRate',100);

 waypointTrajectory

1-413



Create a figure and plot the initial position of the platform. In a loop, step through the trajectory to
output the current position and current orientation. Plot the current position and log the orientation.
Use pause to mimic real-time processing.

figure(1)
plot(waypoints(1,1),waypoints(1,2),'b*')
title('Position')
axis([-1,2,-1,2])
axis square
xlabel('X')
ylabel('Y')
grid on
hold on

orientationLog = zeros(toa(end)*trajectory.SampleRate,1,'quaternion');
count = 1;
while ~isDone(trajectory)
   [currentPosition,orientationLog(count)] = trajectory();

   plot(currentPosition(1),currentPosition(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count+1;
end
hold off

The trajectory output now appears more square-like, especially around the vertices with waypoints.
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Convert the orientation quaternions to Euler angles for easy interpretation, and then plot orientation
over time.

figure(2)
eulerAngles = eulerd([orientation(1);orientationLog],'ZYX','frame');
t = 0:1/trajectory.SampleRate:4;
eulerAngles = plot(t,eulerAngles(:,1),'ko', ...
                   t,eulerAngles(:,2),'bd', ...
                   t,eulerAngles(:,3),'r.');
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location', 'SouthWest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

Create Arc Trajectory

This example shows how to create an arc trajectory using the waypointTrajectory System
object™. waypointTrajectory creates a path through specified waypoints that minimizes
acceleration and angular velocity. After creating an arc trajectory, you restrict the trajectory to be
within preset bounds.
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Create an Arc Trajectory

Define a constraints matrix consisting of waypoints, times of arrival, and orientation for an arc
trajectory. The generated trajectory passes through the waypoints at the specified times with the
specified orientation. The waypointTrajectory System object requires orientation to be specified
using quaternions or rotation matrices. Convert the Euler angles saved in the constraints matrix to
quaternions when specifying the Orientation property.

          % Arrival, Waypoints, Orientation
constraints = [0,    20,20,0,    90,0,0;
               3,    50,20,0,    90,0,0;
               4,    58,15.5,0,  162,0,0;
               5.5,  59.5,0,0    180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    'TimeOfArrival',constraints(:,1), ...
    'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));

Call waypointInfo on trajectory to return a table of your specified constraints. The creation
properties Waypoints, TimeOfArrival, and Orientation are variables of the table. The table is
convenient for indexing while plotting.

tInfo = waypointInfo(trajectory)

tInfo =

  4x3 table

    TimeOfArrival         Waypoints            Orientation   
    _____________    ____________________    ________________

           0           20      20       0    {1x1 quaternion}
           3           50      20       0    {1x1 quaternion}
           4           58    15.5       0    {1x1 quaternion}
         5.5         59.5       0       0    {1x1 quaternion}

The trajectory object outputs the current position, velocity, acceleration, and angular velocity at each
call. Call trajectory in a loop and plot the position over time. Cache the other outputs.

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')
title('Position')
axis([20,65,0,25])
xlabel('North')
ylabel('East')
grid on
daspect([1 1 1])
hold on

orient = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,1,'quaternion');
vel = zeros(tInfo.TimeOfArrival(end)*trajectory.SampleRate,3);
acc = vel;
angVel = vel;

count = 1;
while ~isDone(trajectory)

1 Classes

1-416



   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),'bo')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end

Inspect the orientation, velocity, acceleration, and angular velocity over time. The
waypointTrajectory System object™ creates a path through the specified constraints that
minimized acceleration and angular velocity.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd([tInfo.Orientation{1};orient],'ZYX','frame');
plot(timeVector,eulerAngles(:,1), ...
     timeVector,eulerAngles(:,2), ...
     timeVector,eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on
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figure(3)
plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down','Location','southwest')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on
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Restrict Arc Trajectory Within Preset Bounds

You can specify additional waypoints to create trajectories within given bounds. Create upper and
lower bounds for the arc trajectory.

figure(1)
xUpperBound = [(20:50)';50+10*sin(0:0.1:pi/2)';60*ones(11,1)];
yUpperBound = [20.5.*ones(31,1);10.5+10*cos(0:0.1:pi/2)';(10:-1:0)'];

xLowerBound = [(20:49)';50+9*sin(0:0.1:pi/2)';59*ones(11,1)];
yLowerBound = [19.5.*ones(30,1);10.5+9*cos(0:0.1:pi/2)';(10:-1:0)'];

plot(xUpperBound,yUpperBound,'r','LineWidth',2);
plot(xLowerBound,yLowerBound,'r','LineWidth',2)
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To create a trajectory within the bounds, add additional waypoints. Create a new
waypointTrajectory System object™, and then call it in a loop to plot the generated trajectory.
Cache the orientation, velocity, acceleration, and angular velocity output from the trajectory
object.

            % Time,  Waypoint,     Orientation
constraints = [0,    20,20,0,      90,0,0;
               1.5,  35,20,0,      90,0,0;
               2.5   45,20,0,      90,0,0;
               3,    50,20,0,      90,0,0;
               3.3,  53,19.5,0,    108,0,0;
               3.6,  55.5,18.25,0, 126,0,0;
               3.9,  57.5,16,0,    144,0,0;
               4.2,  59,14,0,      162,0,0;
               4.5,  59.5,10,0     180,0,0;
               5,    59.5,5,0      180,0,0;
               5.5,  59.5,0,0      180,0,0];

trajectory = waypointTrajectory(constraints(:,2:4), ...
    'TimeOfArrival',constraints(:,1), ...
    'Orientation',quaternion(constraints(:,5:7),'eulerd','ZYX','frame'));
tInfo = waypointInfo(trajectory);

figure(1)
plot(tInfo.Waypoints(1,1),tInfo.Waypoints(1,2),'b*')

count = 1;
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while ~isDone(trajectory)
   [pos,orient(count),vel(count,:),acc(count,:),angVel(count,:)] = trajectory();

   plot(pos(1),pos(2),'gd')

   pause(trajectory.SamplesPerFrame/trajectory.SampleRate)
   count = count + 1;
end

The generated trajectory now fits within the specified boundaries. Visualize the orientation, velocity,
acceleration, and angular velocity of the generated trajectory.

figure(2)
timeVector = 0:(1/trajectory.SampleRate):tInfo.TimeOfArrival(end);
eulerAngles = eulerd(orient,'ZYX','frame');
plot(timeVector(2:end),eulerAngles(:,1), ...
     timeVector(2:end),eulerAngles(:,2), ...
     timeVector(2:end),eulerAngles(:,3));
title('Orientation Over Time')
legend('Rotation around Z-axis', ...
       'Rotation around Y-axis', ...
       'Rotation around X-axis', ...
       'Location','southwest')
xlabel('Time (seconds)')
ylabel('Rotation (degrees)')
grid on

figure(3)
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plot(timeVector(2:end),vel(:,1), ...
     timeVector(2:end),vel(:,2), ...
     timeVector(2:end),vel(:,3));
title('Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Velocity (m/s)')
grid on

figure(4)
plot(timeVector(2:end),acc(:,1), ...
     timeVector(2:end),acc(:,2), ...
     timeVector(2:end),acc(:,3));
title('Acceleration Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Acceleration (m/s^2)')
grid on

figure(5)
plot(timeVector(2:end),angVel(:,1), ...
     timeVector(2:end),angVel(:,2), ...
     timeVector(2:end),angVel(:,3));
title('Angular Velocity Over Time')
legend('North','East','Down')
xlabel('Time (seconds)')
ylabel('Angular Velocity (rad/s)')
grid on
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Note that while the generated trajectory now fits within the spatial boundaries, the acceleration and
angular velocity of the trajectory are somewhat erratic. This is due to over-specifying waypoints.

Generate Racetrack Trajectory Using waypointTrajectory

Consider a racetrack trajectory as the following.
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The four corner points of the trajectory are (0,0,0), (20,0,0), (20,5,0) and (0,5,0) in meters,
respectively. Therefore, specify the waypoints of a loop as:

wps = [0 0 0;
      20 0 0;
      20 5 0;
      0  5 0;
      0  0 0];

Assume the trajectory has a constant speed of 2 m/s, and thus the velocities at the five waypoints are:

vels = [2 0 0;
        2 0 0;
       -2 0 0;
       -2 0 0;
        2 0 0];

The time of arrival for the five waypoints is:

t = cumsum([0 20/2 5*pi/2/2 20/2 5*pi/2/2]');

The orientation of the trajectory at the five waypoints are:

eulerAngs = [0 0 0;
             0 0 0;
           180 0 0;
           180 0 0;
             0 0 0]; % Angles in degrees.
% Convert Euler angles to quaternions.
quats = quaternion(eulerAngs,'eulerd','ZYX','frame');

Specify the sample rate as 100 for smoothing trajectory lines.

fs = 100;

1 Classes

1-430



Construct the waypointTrajectory.

traj = waypointTrajectory(wps,'SampleRate',fs, ...
        'Velocities',vels,...
        'TimeOfArrival',t,...
        'Orientation',quats);

Sample and plot the trajectory.

[pos, orient, vel, acc, angvel] = traj();
i = 1;

spf = traj.SamplesPerFrame;
while ~isDone(traj)
    idx = (i+1):(i+spf);
    [pos(idx,:), orient(idx,:), ...
        vel(idx,:), acc(idx,:), angvel(idx,:)] = traj();
    i = i+spf;
end

Plot the trajectory and the specified waypoints.

plot(pos(:,1),pos(:,2), wps(:,1),wps(:,2), '--o')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
legend({'Trajectory', 'Waypoints'})
axis equal
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Algorithms
The waypointTrajectory System object defines a trajectory that smoothly passes through
waypoints. The trajectory connects the waypoints through an interpolation that assumes the gravity
direction expressed in the trajectory reference frame is constant. Generally, you can use
waypointTrajectory to model platform or vehicle trajectories within a hundreds of kilometers
distance span.

The planar path of the trajectory (the x-y plane projection) consists of piecewise, clothoid curves. The
curvature of the curve between two consecutive waypoints varies linearly with the curve length
between them. The tangent direction of the path at each waypoint is chosen to minimize
discontinuities in the curvature, unless the course is specified explicitly via the Course property or
implicitly via the Velocities property. Once the path is established, the object uses cubic Hermite
interpolation to compute the location of the vehicle throughout the path as a function of time and the
planar distance traveled.

The normal component (z-component) of the trajectory is subsequently chosen to satisfy a shape-
preserving piecewise spline (PCHIP) unless the climb rate is specified explicitly via the ClimbRate
property or the third column of the Velocities property. Choose the sign of the climb rate based on
the selected ReferenceFrame:

• When an 'ENU' reference frame is selected, specifying a positive climb rate results in an
increasing value of z.

• When an 'NED' reference frame is selected, specifying a positive climb rate results in a decreasing
value of z.

You can define the orientation of the vehicle through the path in two primary ways:

• If the Orientation property is specified, then the object uses a piecewise-cubic, quaternion
spline to compute the orientation along the path as a function of time.

• If the Orientation property is not specified, then the yaw of the vehicle is always aligned with
the path. The roll and pitch are then governed by the AutoBank and AutoPitch property values,
respectively.

AutoBank AutoPitch Description
false false The vehicle is always level

(zero pitch and roll). This is
typically used for large
marine vessels.

false true The vehicle pitch is aligned
with the path, and its roll is
always zero. This is typically
used for ground vehicles.

true false The vehicle pitch and roll are
chosen so that its local z-axis
is aligned with the net
acceleration (including
gravity). This is typically used
for rotary-wing craft.
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AutoBank AutoPitch Description
true true The vehicle roll is chosen so

that its local transverse plane
aligns with the net
acceleration (including
gravity). The vehicle pitch is
aligned with the path. This is
typically used for two-wheeled
vehicles and fixed-wing
aircraft.

Version History
Introduced in R2022a

Specify wait and reverse motion for waypoint trajectory

You can now specify wait and reverse motion using the waypointTrajectory System object.

• To let the trajectory wait at a specific waypoint, simply repeat the waypoint coordinate in two
consecutive rows when specifying the Waypoints property.

• To render reverse motion, separate positive (forward) and negative (backward) groundspeed
values by a zero value in the GroundSpeed property.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The object function, waypointInfo, does not support code generation.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
robotPlatform
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angdiff
Difference between two angles

Syntax
delta = angdiff(alpha,beta)

delta = angdiff(alpha)

Description
delta = angdiff(alpha,beta) calculates the difference between the angles alpha and beta.
This function subtracts alpha from beta with the result wrapped on the interval [-pi,pi]. You can
specify the input angles as single values or as arrays of angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of alpha
along the first dimension whose size does not equal 1. If alpha is a vector of length n, the first entry
is subtracted from the second, the second from the third, etc. The output, delta, is a vector of length
n-1. If alpha is an m-by-n matrix with m greater than 1, the output, delta, will be a matrix of size
m-1-by-n. If alpha is a scalar, delta returns as an empty vector.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)

d = 3.1416

Calculate Difference Between Two Angle Arrays

d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])

d = 1×3

    1.5708   -0.7854   -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];
d = angdiff(angles)

d = 1×3
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   -1.5708   -0.7854    0.7854

Input Arguments
alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is the angle that
is subtracted from beta when specified. If alpha is a scalar, delta returns as an empty vector.
Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the same size as
alpha. This is the angle that alpha is subtracted from when specified.
Example: pi/2

Output Arguments
delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is wrapped to
the interval [-pi,pi]. If alpha is a scalar, delta returns as an empty vector.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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angvel
Angular velocity from quaternion array

Syntax
AV = angvel(Q,dt,'frame')
AV = angvel(Q,dt,'point')
[AV,qf] = angvel(Q,dt,fp,qi)

Description
AV = angvel(Q,dt,'frame') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to frame rotation. The initial quaternion is assumed to represent
zero rotation.

AV = angvel(Q,dt,'point') returns the angular velocity array from an array of quaternions, Q.
The quaternions in Q correspond to point rotation. The initial quaternion is assumed to represent zero
rotation.

[AV,qf] = angvel(Q,dt,fp,qi) allows you to specify the initial quaternion, qi, and the type of
rotation, fp. It also returns the final quaternion, qf.

Examples

Generate Angular Velocity From Quaternion Array

Create an array of quaternions.

eulerAngles = [(0:10:90).',zeros(numel(0:10:90),2)];
q = quaternion(eulerAngles,'eulerd','ZYX','frame');

Specify the time step and generate the angular velocity array.

dt = 1;
av = angvel(q,dt,'frame') % units in rad/s

av = 10×3

         0         0         0
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743
         0         0    0.1743

2 Functions

2-4



Input Arguments
Q — Quaternions
N-by-1 vector of quaternions

Quaternions, specified as an N-by-1 vector of quaternions.
Data Types: quaternion

dt — Time step
nonnegative scalar

Time step, specified as a nonnegative scalar.
Data Types: single | double

fp — Type of rotation
'frame' | 'point'

Type of rotation, specified as 'frame' or 'point'.

qi — Initial quaternion
quaternion

Initial quaternion, specified as a quaternion.
Data Types: quaternion

Output Arguments
AV — Angular velocity
N-by-3 real matrix

Angular velocity, returned as an N-by-3 real matrix. N is the number of quaternions given in the input
Q. Each row of the matrix corresponds to an angular velocity vector.

qf — Final quaternion
quaternion

Final quaternion, returned as a quaternion. qf is the same as the last quaternion in the Q input.
Data Types: quaternion

Version History
Introduced in R2020a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
quaternion

2 Functions

2-6



axang2quat
Convert axis-angle rotation to quaternion

Syntax
quat = axang2quat(axang)

Description
quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to quaternion,
quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];
quat = axang2quat(axang)

quat = 1×4

    0.7071    0.7071         0         0

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2axang

Topics
“Coordinate Transformations in Robotics”
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axang2rotm
Convert axis-angle rotation to rotation matrix

Syntax
rotm = axang2rotm(axang)

Description
rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];
rotm = axang2rotm(axang)

rotm = 3×3

    0.0000         0    1.0000
         0    1.0000         0
   -1.0000         0    0.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2axang

Topics
“Coordinate Transformations in Robotics”
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axang2tform
Convert axis-angle rotation to homogeneous transformation

Syntax
tform = axang2tform(axang)

Description
tform = axang2tform(axang) converts a rotation given in axis-angle form, axang, to a
homogeneous transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation
axang = [1 0 0 pi/2]; 
tform = axang2tform(axang)

tform = 4×4

    1.0000         0         0         0
         0    0.0000   -1.0000         0
         0    1.0000    0.0000         0
         0         0         0    1.0000

Input Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the coordinates to be
formed (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2axang

Topics
“Coordinate Transformations in Robotics”
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bsplinepolytraj
Generate polynomial trajectories using B-splines

Syntax
[q,qd,qdd,pp] = bsplinepolytraj(controlPoints,tInterval,tSamples)

Description
[q,qd,qdd,pp] = bsplinepolytraj(controlPoints,tInterval,tSamples) generates a
piecewise cubic B-spline trajectory that falls in the control polygon defined by controlPoints. The
trajectory is uniformly sampled between the start and end times given in tInterval. The function
returns the positions, velocities, and accelerations at the input time samples, tSamples. The function
also returns the piecewise polynomial pp form of the polynomial trajectory with respect to time.

Examples

Compute B-Spline Trajectory for 2-D Planar Motion

Use the bsplinepolytraj function with a given set of 2-D xy control points. The B-spline uses these
control points to create a trajectory inside the polygon. The start and end time for the trajectory are
also given.

cpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = [0 5];

Compute the B-spline trajectory. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), time vector (tvec), and polynomial coefficients (pp) of the polynomial that
achieves the waypoints using the control points.

tvec = 0:0.01:5;
[q, qd, qdd, pp] = bsplinepolytraj(cpts,tpts,tvec);

Plot the results. Show the control points and the resulting trajectory inside them.

figure
plot(cpts(1,:),cpts(2,:),'xb-')
hold all
plot(q(1,:), q(2,:))
xlabel('X')
ylabel('Y')
hold off
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Plot the position of each element of the B-spline trajectory. These trajectories are cubic piecewise
polynomials parameterized in time.

figure
plot(tvec,q)
hold all
plot([0:length(cpts)-1],cpts,'x')
xlabel('t')
ylabel('Position Value')
legend('X-positions','Y-positions')
hold off
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Interpolate with B-Spline

Create waypoints to interpolate with a B-Spline.

wpts1 = [0 1 2.1 8 4 3];
wpts2 = [0 1 1.3 .8 .3 .3];
wpts = [wpts1; wpts2];
L = length(wpts) - 1;

Form matrices used to compute interior points of control polygon

r = zeros(L+1, size(wpts,1));
A = eye(L+1);
for i= 1:(L-1)
    A(i+1,(i):(i+2)) = [1 4 1];
    r(i+1,:) = 6*wpts(:,i+1)';
end

Override end points and choose r0 and rL.

A(2,1:3) = [3/2 7/2 1]; 
A(L,(L-1):(L+1)) = [1 7/2 3/2]; 

r(1,:) = (wpts(:,1) + (wpts(:,2) - wpts(:,1))/2)';
r(end,:) = (wpts(:,end-1) + (wpts(:,end) - wpts(:,end-1))/2)';
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dInterior = (A\r)';

Construct a complete control polygon and use bsplinepolytraj to compute a polynomial with the
new control points

cpts = [wpts(:,1) dInterior wpts(:,end)];
t = 0:0.01:1;
q = bsplinepolytraj(cpts, [0 1], t);

Plot the results. Show the original waypoints, the computed polygon, and the interpolated B-spline.

figure;
hold all
plot(wpts1, wpts2, 'o');
plot(cpts(1,:), cpts(2,:), 'x-');
plot(q(1,:), q(2,:));
legend('Original waypoints', 'Computed control polygon', 'B-spline');

[1] Farin, Section 9.1

Input Arguments
controlPoints — Points for control polygon
n-by-p matrix
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Points for control polygon of B-spline trajectory, specified as an n-by-p matrix, where n is the
dimension of the trajectory and p is the number of control points.
Example: [1 4 4 3 -2 0; 0 1 2 4 3 1]
Data Types: single | double

tInterval — Start and end times for trajectory
two-element vector

Start and end times for the trajectory, specified as a two-element vector.
Example: [0 10]
Data Types: single | double

tSamples — Time samples for trajectory
vector

Time samples for the trajectory, specified as a vector. The output position, q, velocity, qd, and
accelerations, qdd, are sampled at these time intervals.
Example: 0:0.01:10
Data Types: single | double

Output Arguments
q — Positions of trajectory
vector

Positions of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double

qd — Velocities of trajectory
vector

Velocities of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double

qdd — Accelerations of trajectory
vector

Accelerations of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double

pp — Piecewise-polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
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• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of
the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. For example, cubic polynomials have an order of 4.
• dim: n. The dimension of the control point positions.

Version History
Introduced in R2019a

References
[1] Farin, Gerald E. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.

San Diego, CA: Academic Press, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
contopptraj | cubicpolytraj | quinticpolytraj | rottraj | transformtraj | trapveltraj

2 Functions

2-18



cart2hom
Convert Cartesian coordinates to homogeneous coordinates

Syntax
hom = cart2hom(cart)

Description
hom = cart2hom(cart) converts a set of points in Cartesian coordinates to homogeneous
coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];
h = cart2hom(c)

h = 2×4

    0.8147    0.1270    0.6324    1.0000
    0.9058    0.9134    0.0975    1.0000

Input Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, specified as an n-by-(k–1) matrix, containing n points. Each row of cart
represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Output Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. k must be greater than or
equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
hom2cart

Topics
“Coordinate Transformations in Robotics”
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checkCollision
Check if two geometries are in collision

Syntax
collisionStatus = checkCollision(geom1,geom2)
[collisionStatus,sepdist,witnesspts] = checkCollision(geom1,geom2)

Description
collisionStatus = checkCollision(geom1,geom2) returns the collision status between the
two convex geometries geom1 and geom2. If the two geometries are in collision at their specified
poses, collisionStatus is 1. If the function does not find a collision, collisionStatus is 0.

[collisionStatus,sepdist,witnesspts] = checkCollision(geom1,geom2) returns the
minimal distance sepdist and witness points witnesspts of each geometry when the function does
not find a collision between the two geometries.

Examples

Check Geometry Collision Status

This example shows how to check the collision status of two collision geometries.

Create a box collision geometry.

bx = collisionBox(1,2,3);

Create a cylinder collision geometry.

cy = collisionCylinder(3,1);

Translate the cylinder along the x-axis by 2.

T = trvec2tform([2 0 0]);
cy.Pose = T;

Plot the two geometries.

show(cy)
hold on
show(bx)
xlim([-5 5])
ylim([-5 5])
zlim([-5 5])
hold off
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Check the collision status. Confirm the status is consistent with the plot.

[areIntersecting,dist,witnessPoints] = checkCollision(bx,cy)

areIntersecting = 1

dist = NaN

witnessPoints = 3×2

   NaN   NaN
   NaN   NaN
   NaN   NaN

Translate the box along the x-axis by 3 and down the z-axis by 4. Confirm the box and cylinder are not
colliding.

T = trvec2tform([0 3 -4]);
bx.Pose = T;
[areIntersecting,dist,witnessPoints] = checkCollision(bx,cy)

areIntersecting = 0

dist = 2

witnessPoints = 3×2

    0.4286    0.4286

2 Functions

2-22



    2.0000    2.0000
   -2.5000   -0.5000

Plot the box, cylinder, and the line segment representing the minimum distance between the two
geometries.

show(cy)
hold on
show(bx)
wp = witnessPoints;
plot3([wp(1,1) wp(1,2)], [wp(2,1) wp(2,2)], [wp(3,1) wp(3,2)], 'bo-')
xlim([-5 5])
ylim([-5 5])
zlim([-5 5])
hold off

Check Collision Between Collision Capsules

Create two collision capsules. Center one at the origin, and set the pose of the other capsule to 3
meters away from the origin on the y-axis. Display the capsules.

cc1 = collisionCapsule(1,4);
cc2 = collisionCapsule(1,4);
cc2.Pose = trvec2tform([0 3 0]);
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show(cc1);
hold on
show(cc2);
axis auto
hold off

Check for collision between the two collision capsules. Because they are not visually colliding, the
function should return real-valued separation distances and witness points. Display the separation
distances and witness points.

[isColliding,separationDist,witnessPts] = checkCollision(cc1,cc2);
disp("Separation Distance: " + num2str(separationDist))

Separation Distance: 1

disp("Capsule 1 Witness Point (X Y Z): " + num2str(witnessPts(:,1)'))

Capsule 1 Witness Point (X Y Z): 0  1 -2

disp("Capsule 2 Witness Point (X Y Z): " + num2str(witnessPts(:,2)'))

Capsule 2 Witness Point (X Y Z): 0  2 -2

Rotate the second capsule 90 degrees on the z-axis.

cc2.Pose(1:3,1:3) = eul2rotm([0 0 pi/2]);
show(cc1);
hold on
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show(cc2);
axis auto

Check again for collision between the capsules. Because they are in collision, the function returns the
separation distance and witness points as NaN.

[isColliding,separationDist,witnessPts] = checkCollision(cc1,cc2);
disp("Separation Distance: " + num2str(separationDist))

Separation Distance: NaN

disp("Capsule 1 Witness Point (X Y Z): " + num2str(witnessPts(:,1)'))

Capsule 1 Witness Point (X Y Z): NaN  NaN  NaN

disp("Capsule 2 Witness Point (X Y Z): " + num2str(witnessPts(:,2)'))

Capsule 2 Witness Point (X Y Z): NaN  NaN  NaN

Input Arguments
geom1 — First collision geometry
collision geometry object

First collision geometry, specified as one of these collision geometry objects:

 checkCollision
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• collisionBox
• collisionCapsule
• collisionCylinder
• collisionMesh
• collisionSphere

geom2 — Second collision geometry
collision geometry object

Collision geometry, specified as one of these collision geometry objects:

• collisionBox
• collisionCapsule
• collisionCylinder
• collisionMesh
• collisionSphere

Output Arguments
collisionStatus — Collision status
0 | 1

Collision status, returned as 0 or 1. If the two geometries are in collision, collisionStatus is 1.
Otherwise, the value is 0.
Data Types: double

sepdist — Minimal distance between collision geometries
real number

Minimal distance between the two collision geometries, returned as a real number. The line segment
that connects the witness points witnesspts determines the minimal distance between the two
geometries. When the two geometries are in collision, sepdist is NaN.
Data Types: double

witnesspts — Witness points on each geometry
3-by-2 matrix

Witness points on each geometry, returned as a 3-by-2 matrix. Each column is the location of the
witness point on the corresponding geometry, geom1 or geom2. The line segment that connects the
two witness points has length septdist. When the two geometries are in collision, every element of
witnesspts is NaN.
Data Types: double

Limitations
• Collision checking results are unreliable when the minimal distance is below 10-5 m.

2 Functions

2-26



Version History
Introduced in R2019b

References
[1] Gilbert, E.G., D.W. Johnson, and S.S. Keerthi. "A fast procedure for computing the distance

between complex objects in three-dimensional space." IEEE Journal on Robotics and
Automation 4, no. 2 (April 1988): 193–203. https://doi.org/10.1109/56.2083.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
collisionBox | collisionCylinder | collisionMesh | collisionSphere
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classUnderlying
Class of parts within quaternion

Syntax
underlyingClass = classUnderlying(quat)

Description
underlyingClass = classUnderlying(quat) returns the name of the class of the parts of the
quaternion quat.

Examples

Get Underlying Class of Quaternion

A quaternion is a four-part hyper-complex number used in three-dimensional representations. The
four parts of the quaternion are of data type single or double.

Create two quaternions, one with an underlying data type of single, and one with an underlying
data type of double. Verify the underlying data types by calling classUnderlying on the
quaternions.

qSingle = quaternion(single([1,2,3,4]))

qSingle = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qSingle)

ans = 
'single'

qDouble = quaternion([1,2,3,4])

qDouble = quaternion
     1 + 2i + 3j + 4k

classUnderlying(qDouble)

ans = 
'double'

You can separate quaternions into their parts using the parts function. Verify the parts of each
quaternion are the correct data type. Recall that double is the default MATLAB® type.

[aS,bS,cS,dS] = parts(qSingle)

aS = single
    1
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bS = single
    2

cS = single
    3

dS = single
    4

[aD,bD,cD,dD] = parts(qDouble)

aD = 1

bD = 2

cD = 3

dD = 4

Quaternions follow the same implicit casting rules as other data types in MATLAB. That is, a
quaternion with underlying data type single that is combined with a quaternion with underlying
data type double results in a quaternion with underlying data type single. Multiply qDouble and
qSingle and verify the resulting underlying data type is single.

q = qDouble*qSingle;
classUnderlying(q)

ans = 
'single'

Input Arguments
quat — Quaternion to investigate
scalar | vector | matrix | multi-dimensional array

Quaternion to investigate, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
underlyingClass — Underlying class of quaternion object
'single' | 'double'

Underlying class of quaternion, returned as the character vector 'single' or 'double'.
Data Types: char

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
compact | parts

Objects
quaternion
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compact
Convert quaternion array to N-by-4 matrix

Syntax
matrix = compact(quat)

Description
matrix = compact(quat) converts the quaternion array, quat, to an N-by-4 matrix. The columns
are made from the four quaternion parts. The ith row of the matrix corresponds to quat(i).

Examples

Convert Quaternion Array to Compact Representation of Parts

Create a scalar quaternion with random parts. Convert the parts to a 1-by-4 vector using compact.

randomParts = randn(1,4)

randomParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

quat = quaternion(randomParts)

quat = quaternion
     0.53767 +  1.8339i -  2.2588j + 0.86217k

quatParts = compact(quat)

quatParts = 1×4

    0.5377    1.8339   -2.2588    0.8622

Create a 2-by-2 array of quaternions, then convert the representation to a matrix of quaternion parts.
The output rows correspond to the linear indices of the quaternion array.

quatArray = [quaternion([1:4;5:8]),quaternion([9:12;13:16])]

quatArray = 2x2 quaternion array
      1 +  2i +  3j +  4k      9 + 10i + 11j + 12k
      5 +  6i +  7j +  8k     13 + 14i + 15j + 16k

quatArrayParts = compact(quatArray)

quatArrayParts = 4×4

 compact
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     1     2     3     4
     5     6     7     8
     9    10    11    12
    13    14    15    16

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
matrix — Quaternion in matrix form
N-by-4 matrix

Quaternion in matrix form, returned as an N-by-4 matrix, where N = numel(quat).
Data Types: single | double

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | classUnderlying

Objects
quaternion
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conj
Complex conjugate of quaternion

Syntax
quatConjugate = conj(quat)

Description
quatConjugate = conj(quat) returns the complex conjugate of the quaternion, quat.

If q = a + bi + c j + dk, the complex conjugate of q is q* = a− bi− c j− dk. Considered as a rotation
operator, the conjugate performs the opposite rotation. For example,

q = quaternion(deg2rad([16 45 30]),'rotvec');
a = q*conj(q);
rotatepoint(a,[0,1,0])

ans =

     0     1     0

Examples

Complex Conjugate of Quaternion

Create a quaternion scalar and get the complex conjugate.

q = normalize(quaternion([0.9 0.3 0.3 0.25]))

q = quaternion
     0.87727 + 0.29242i + 0.29242j + 0.24369k

qConj = conj(q)

qConj = quaternion
     0.87727 - 0.29242i - 0.29242j - 0.24369k

Verify that a quaternion multiplied by its conjugate returns a quaternion one.

q*qConj

ans = quaternion
     1 + 0i + 0j + 0k
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Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to conjugate, specified as a scalar, vector, matrix, or array of quaternions.
Data Types: quaternion

Output Arguments
quatConjugate — Quaternion conjugate
scalar | vector | matrix | multidimensional array

Quaternion conjugate, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times

Objects
quaternion
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contopptraj
Generate trajectory subject to kinematic constraints

Syntax
[q,qd,qdd,t] = contopptraj(waypoints,vellim,accellim)
[ ___ ] = contopptraj(polypath,vellim,accellim)
[ ___ ] = contopptraj( ___ ,NumSamples=N)
[ ___ ,solninfo] = contopptraj( ___ )

Description
[q,qd,qdd,t] = contopptraj(waypoints,vellim,accellim) generates a trajectory by fitting
a path to a set of waypoints waypoints. The function returns a time-optimal trajectory along the
path for position q, velocity qd, and acceleration qdd at sample times t, while constrained by the
velocity vellim and acceleration limits accellim. This function requires Optimization Toolbox™.

[ ___ ] = contopptraj(polypath,vellim,accellim) generates a trajectory along the
specified polynomial path polypath using all output arguments from the previous syntax.

[ ___ ] = contopptraj( ___ ,NumSamples=N) specifies the number of samples to use when
generating the trajectory, in addition to any combination of arguments from previous syntaxes.

[ ___ ,solninfo] = contopptraj( ___ ) outputs solution information solninfo with diagnostic
information associated with the output trajectory, in addition to any combination of arguments from
previous syntaxes.

Examples

Create Kinematically Constrained Trajectory

Create waypoints, velocity limits, and acceleration limits.

waypoints = [0 5 10 -10; 0 8 -10 5; 0 -10 15 5];
velLimits = [-1 1; -2 2; -3 3];
accelLimits = [-1 1; -2 2; -3 3];

Generate the position, velocity, acceleration, and time vector of the trajectory with 200 samples.

[q,qd,qdd,t] = contopptraj(waypoints,velLimits,accelLimits,NumSamples=200);

Plot the positions, velocities, and accelerations against the sample times t.

figure
title("Position vs Sample Time")
ylim("padded")
hold on
q = real(q);
qd = real(qd);
qdd = real(qdd);
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t = real(t);
plot(t,q(1,:)) % X Position
plot(t,q(2,:)) % Y Position
plot(t,q(3,:)) % Z Position
xlabel("Sample Time (s)")
ylabel("Position (m)")
legend(["X","Y","Z"])
hold off

helperPlotConstrainedTrajectory(qd,t,velLimits,"Velocity")
ylabel("Velocity (m/s)")
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helperPlotConstrainedTrajectory(qdd,t,accelLimits,"Acceleration")
ylabel("Acceleration (m/s^2)")

 contopptraj
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Input Arguments
waypoints — Trajectory waypoints for path fitting
n-by-p matrix

Trajectory waypoints for path fitting, specified as an m-by-n matrix. n is the number of elements in
the state space, and p is the number of distinct waypoints.
Example: [1 1 2 3; 2 5 4 5; 5 7 6 8] is a set of four waypoints with three state space
elements each.

vellim — Minimum and maximum velocity limits of trajectory
n-by-2 matrix

Minimum and maximum velocity limits of the trajectory, specified as an n-by-2 matrix, in units per
second. n is the number of elements in the state space, and each row is of the form [minimumLimit
maximumLimit], specifying the minimum and maximum velocity for each state space element. To
generate a trajectory without velocity limits, specify this argument as an empty array.
Example: [-1 1; -2 5; -5 8] is a set of velocity limits for three state space elements.

accellim — Minimum and maximum acceleration limits of trajectory
n-by-2 matrix

Minimum and maximum acceleration limits of the trajectory, specified as an n-by-2 matrix, in units
per seconds squared. n is the number of elements in the state space, and each row is of the form
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[minimumLimit maximumLimit], specifying the minimum and maximum velocity for each state space
element. To generate a trajectory without acceleration limits, specify this argument as an empty
array.
Example: [-1 1; -2 5; -5 8] is a set of acceleration limits for three state space elements.

polypath — Piecewise polynomial path for trajectory generation
structure

Piecewise polynomial path for trajectory generation, specified as a structure such as the output
returned from the mkpp or spline functions. For more information on the fields of this structure, see
the pp argument of the mkpp the function.
Data Types: struct

N — Number of samples for trajectory generation
100 (default) | positive integer

Number of samples for trajectory generation, specified as a positive integer.
Example: NumSamples=200

Output Arguments
q — Trajectory positions
n-by-m matrix

Trajectory positions, returned as a n-by-m matrix. n is the number of elements in the state space, and
m is the number of samples in the trajectory.

qd — Trajectory velocities
n-by-m matrix

Trajectory velocities, returned as a n-by-m matrix. n is the number of elements in the state space, and
m is the number of samples in the trajectory.

qdd — Trajectory accelerations
n-by-m matrix

Trajectory accelerations, returned as a n-by-m matrix. n is the number of elements in the state space,
and m is the number of samples in the trajectory.

t — Sample times
m-element vector

Sample times, returned as a m-element vector, in seconds. m is the number of samples in the
trajectory.

solninfo — Solution information
structure

Solution information, specified as a structure containing these fields:

• ExitFlag — Number indicating whether contopptraj could find a solution. A value of 1
indicates the function successfully found a solution, and a value of 0 indicates that the function
was not able to find a feasible solution.
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Version History
Introduced in R2022b

References
[1] Pham, Hung, and Quang-Cuong Pham. “A New Approach to Time-Optimal Path Parameterization

Based on Reachability Analysis.” IEEE Transactions on Robotics, 34, no. 3 (June 2018): 645–
59. https://doi.org/10.1109/TRO.2018.2819195.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
bsplinepolytraj | cubicpolytraj | minjerkpolytraj | minsnappolytraj |
quinticpolytraj | rottraj | transformtraj | trapveltraj
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createCustomRobotSensorTemplate
Create sample implementation for robot custom sensor interface

Syntax
createCustomRobotSensorTemplate

Description
createCustomRobotSensorTemplate creates a sample template implementation for robot custom
sensor that inherits from the robotics.SensorAdaptor class. This function opens a new file in
MATLAB editor.

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.

createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.

edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 

Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];
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wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.

chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.

chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);
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figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on

In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 

while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
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    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)

        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);
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    updateSensors(scenario);
end

Version History
Introduced in R2022b

See Also
robotics.SensorAdaptor
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ctranspose, '
Complex conjugate transpose of quaternion array

Syntax
quatTransposed = quat'

Description
quatTransposed = quat' returns the complex conjugate transpose of the quaternion, quat.

Examples

Vector Complex Conjugate Transpose

Create a vector of quaternions and compute its complex conjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat'

quatTransposed = 1x4 quaternion array
      0.53767 -  0.31877i -   3.5784j -   0.7254k       1.8339 +   1.3077i -   2.7694j + 0.063055k      -2.2588 +  0.43359i +   1.3499j -  0.71474k      0.86217 -  0.34262i -   3.0349j +  0.20497k

Matrix Complex Conjugate Transpose

Create a matrix of quaternions and compute its complex conjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat'

quatTransposed = 2x2 quaternion array
      0.53767 +   2.2588i -  0.31877j +  0.43359k       1.8339 -  0.86217i +   1.3077j -  0.34262k
       3.5784 +   1.3499i -   0.7254j -  0.71474k       2.7694 -   3.0349i + 0.063055j +  0.20497k
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Input Arguments
quat — Quaternion to transpose
scalar | vector | matrix

Quaternion to transpose, specified as a vector or matrix or quaternions. The complex conjugate
transpose is defined for 1-D and 2-D arrays.
Data Types: quaternion

Output Arguments
quatTransposed — Conjugate transposed quaternion
scalar | vector | matrix

Conjugate transposed quaternion, returned as an N-by-M array, where quat was specified as an M-
by-N array.
Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
transpose, '

Objects
quaternion
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cubicpolytraj
Generate third-order polynomial trajectories

Syntax
[q,qd,qdd,pp] = cubicpolytraj(wayPoints,timePoints,tSamples)
[q,qd,qdd,pp] = cubicpolytraj( ___ ,Name,Value)

Description
[q,qd,qdd,pp] = cubicpolytraj(wayPoints,timePoints,tSamples) generates a third-
order polynomial that achieves a given set of input waypoints with corresponding time points. The
function outputs positions, velocities, and accelerations at the given time samples, tSamples. The
function also returns the piecewise polynomial pp form of the polynomial trajectory with respect to
time.

[q,qd,qdd,pp] = cubicpolytraj( ___ ,Name,Value) specifies additional parameters as
Name,Value pair arguments using any combination of the previous syntaxes.

Examples

Compute Cubic Trajectory for 2-D Planar Motion

Use the cubicpolytraj function with a given set of 2-D xy waypoints. Time points for the waypoints
are also given.

wpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = 0:5;

Specify a time vector for sampling the trajectory. Sample at a smaller interval than the specified time
points.

tvec = 0:0.01:5;

Compute the cubic trajectory. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), and polynomial coefficients (pp) of the cubic polynomial.

[q, qd, qdd, pp] = cubicpolytraj(wpts, tpts, tvec);

Plot the cubic trajectories for the x- and y-positions. Compare the trajectory with each waypoint.

plot(tvec, q)
hold all
plot(tpts, wpts, 'x')
xlabel('t')
ylabel('Positions')
legend('X-positions','Y-positions')
hold off
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You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y -positions.

figure
plot(q(1,:),q(2,:),'-b',wpts(1,:),wpts(2,:),'or')
xlabel('X')
ylabel('Y')

 cubicpolytraj
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Input Arguments
wayPoints — Waypoints for trajectory
n-by-p matrix

Points for waypoints of trajectory, specified as an n-by-p matrix, where n is the dimension of the
trajectory and p is the number of waypoints.
Example: [1 4 4 3 -2 0; 0 1 2 4 3 1]
Data Types: single | double

timePoints — Time points for waypoints of trajectory
p-element vector

Time points for waypoints of trajectory, specified as a p-element vector.
Example: [0 2 4 5 8 10]
Data Types: single | double

tSamples — Time samples for trajectory
m-element vector

Time samples for the trajectory, specified as an m-element vector. The output position, q, velocity, qd,
and accelerations, qdd, are sampled at these time intervals.
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Example: 0:0.01:10
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VelocityBoundaryCondition',[1 0 -1 -1 0 0; 1 1 1 -1 -1 -1]

VelocityBoundaryCondition — Velocity boundary conditions for each waypoint
zeroes(n,p) (default) | n-by-p matrix

Velocity boundary conditions for each waypoint, specified as the comma-separated pair consisting of
'VelocityBoundaryCondition' and an n-by-p matrix. Each row corresponds to the velocity at all
p waypoints for the respective variable in the trajectory.
Example: [1 0 -1 -1 0 0; 1 1 1 -1 -1 -1]
Data Types: single | double

Output Arguments
q — Positions of trajectory
m-element vector

Positions of the trajectory at the given time samples in tSamples, returned as an m-element vector,
where m is the length of tSamples.
Data Types: single | double

qd — Velocities of trajectory
vector

Velocities of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double

qdd — Accelerations of trajectory
vector

Accelerations of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double

pp — Piecewise-polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.

 cubicpolytraj
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• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number
of waypoints.

• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of
the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. For example, cubic polynomials have an order of 4.
• dim: n. The dimension of the control point positions.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bsplinepolytraj | contopptraj | quinticpolytraj | rottraj | transformtraj |
trapveltraj

2 Functions

2-52



dist
Angular distance in radians

Syntax
distance = dist(quatA,quatB)

Description
distance = dist(quatA,quatB) returns the angular distance in radians between two
quaternions, quatA and quatB.

Examples

Calculate Quaternion Distance

Calculate the quaternion distance between a single quaternion and each element of a vector of
quaternions. Define the quaternions using Euler angles.

q = quaternion([0,0,0],'eulerd','zyx','frame')

q = quaternion
     1 + 0i + 0j + 0k

qArray = quaternion([0,45,0;0,90,0;0,180,0;0,-90,0;0,-45,0],'eulerd','zyx','frame')

qArray = 5x1 quaternion array
       0.92388 +         0i +   0.38268j +         0k
       0.70711 +         0i +   0.70711j +         0k
    6.1232e-17 +         0i +         1j +         0k
       0.70711 +         0i -   0.70711j +         0k
       0.92388 +         0i -   0.38268j +         0k

quaternionDistance = rad2deg(dist(q,qArray))

quaternionDistance = 5×1

   45.0000
   90.0000
  180.0000
   90.0000
   45.0000

If both arguments to dist are vectors, the quaternion distance is calculated between corresponding
elements. Calculate the quaternion distance between two quaternion vectors.

angles1 = [30,0,15; ...
           30,5,15; ...

 dist
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           30,10,15; ...
           30,15,15];
angles2 = [30,6,15; ...
           31,11,15; ...
           30,16,14; ...
           30.5,21,15.5];

qVector1 = quaternion(angles1,'eulerd','zyx','frame');
qVector2 = quaternion(angles2,'eulerd','zyx','frame');

rad2deg(dist(qVector1,qVector2))

ans = 4×1

    6.0000
    6.0827
    6.0827
    6.0287

Note that a quaternion represents the same rotation as its negative. Calculate a quaternion and its
negative.

qPositive = quaternion([30,45,-60],'eulerd','zyx','frame')

qPositive = quaternion
     0.72332 - 0.53198i + 0.20056j +  0.3919k

qNegative = -qPositive

qNegative = quaternion
    -0.72332 + 0.53198i - 0.20056j -  0.3919k

Find the distance between the quaternion and its negative.

dist(qPositive,qNegative)

ans = 0

The components of a quaternion may look different from the components of its negative, but both
expressions represent the same rotation.

Input Arguments
quatA,quatB — Quaternions to calculate distance between
scalar | vector | matrix | multidimensional array

Quaternions to calculate distance between, specified as comma-separated quaternions or arrays of
quaternions. quatA and quatB must have compatible sizes:

• size(quatA) == size(quatB), or
• numel(quatA) == 1, or
• numel(quatB) == 1, or
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• if [Adim1,…,AdimN] = size(quatA) and [Bdim1,…,BdimN] = size(quatB), then for i =
1:N, either Adimi==Bdimi or Adim==1 or Bdim==1.

If one of the quaternion arguments contains only one quaternion, then this function returns the
distances between that quaternion and every quaternion in the other argument.

Data Types: quaternion

Output Arguments
distance — Angular distance (radians)
scalar | vector | matrix | multidimensional array

Angular distance in radians, returned as an array. The dimensions are the maximum of the union of
size(quatA) and size(quatB).
Data Types: single | double

Algorithms
The dist function returns the angular distance between two quaternions.

A quaternion may be defined by an axis (ub,uc,ud) and angle of rotation θq:
q = cos θq 2 + sin θq 2 ubi + uc j + udk .

Given a quaternion in the form, q = a + bi + c j + dk, where a is the real part, you can solve for the
angle of q as θq = 2cos−1(a).

Consider two quaternions, p and q, and the product z = p * conjugate(q). As p approaches q, the angle
of z goes to 0, and z approaches the unit quaternion.

The angular distance between two quaternions can be expressed as θz = 2cos−1 real z .

Using the quaternion data type syntax, the angular distance is calculated as:

angularDistance = 2*acos(abs(parts(p*conj(q))));

 dist
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Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
parts | conj

Objects
quaternion
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eul2quat
Convert Euler angles to quaternion

Syntax
quat = eul2quat(eul)
quat = eul2quat(eul,sequence)

Description
quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding quaternion,
quat. The default order for Euler angle rotations is "ZYX".

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler angle
rotations is "ZYX".

Examples

Convert Euler Angles to Quaternion

eul = [0 pi/2 0];
qZYX = eul2quat(eul)

qZYX = 1×4

    0.7071         0    0.7071         0

Convert Euler Angles to Quaternion Using Default ZYZ Axis Order

eul = [pi/2 0 0];
qZYZ = eul2quat(eul,'ZYZ')

qZYZ = 1×4

    0.7071         0         0    0.7071

Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.

 eul2quat
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Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2eul | quaternion

Topics
“Coordinate Transformations in Robotics”
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eul2rotm
Convert Euler angles to rotation matrix

Syntax
rotm = eul2rotm(eul)
rotm = eul2rotm(eul,sequence)

Description
rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding rotation matrix,
rotm. When using the rotation matrix, premultiply it with the coordinates to be rotated (as opposed
to postmultiplying). The default order for Euler angle rotations is "ZYX".

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler angle
rotations is "ZYX".

Examples

Convert Euler Angles to Rotation Matrix

eul = [0 pi/2 0];
rotmZYX = eul2rotm(eul)

rotmZYX = 3×3

    0.0000         0    1.0000
         0    1.0000         0
   -1.0000         0    0.0000

Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
rotmZYZ = eul2rotm(eul,'ZYZ')

rotmZYZ = 3×3

    0.0000   -0.0000    1.0000
    1.0000    0.0000         0
   -0.0000    1.0000    0.0000
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Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2eul

Topics
“Coordinate Transformations in Robotics”
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eul2tform
Convert Euler angles to homogeneous transformation

Syntax
tform = eul2tform(eul)
tform = eul2tform(eul,sequence)

Description
tform = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous transformation
matrix, tform. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying). The default order for Euler angle rotations is "ZYX".

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous transformation.
The Euler angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];
tformZYX = eul2tform(eul)

tformZYX = 4×4

    0.0000         0    1.0000         0
         0    1.0000         0         0
   -1.0000         0    0.0000         0
         0         0         0    1.0000

Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];
tformZYZ = eul2tform(eul,'ZYZ')

tformZYZ = 4×4

    0.0000   -0.0000    1.0000         0
    1.0000    0.0000         0         0
   -0.0000    1.0000    0.0000         0
         0         0         0    1.0000
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Input Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2eul

Topics
“Coordinate Transformations in Robotics”
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euler
Convert quaternion to Euler angles (radians)

Syntax
eulerAngles = euler(quat,rotationSequence,rotationType)

Description
eulerAngles = euler(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles.

Examples

Convert Quaternion to Euler Angles in Radians

Convert a quaternion frame rotation to Euler angles in radians using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesRandians = euler(quat,'ZYX','frame')

eulerAnglesRandians = 1×3

         0         0    1.5708

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string

 euler
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (radians)
N-by-3 matrix

Euler angle representation in radians, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first element corresponds to the first axis in the rotation
sequence, the second element corresponds to the second axis in the rotation sequence, and the third
element corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
eulerd | rotateframe | rotatepoint

Objects
quaternion
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eulerd
Convert quaternion to Euler angles (degrees)

Syntax
eulerAngles = eulerd(quat,rotationSequence,rotationType)

Description
eulerAngles = eulerd(quat,rotationSequence,rotationType) converts the quaternion,
quat, to an N-by-3 matrix of Euler angles in degrees.

Examples

Convert Quaternion to Euler Angles in Degrees

Convert a quaternion frame rotation to Euler angles in degrees using the 'ZYX' rotation sequence.

quat = quaternion([0.7071 0.7071 0 0]);
eulerAnglesDegrees = eulerd(quat,'ZYX','frame')

eulerAnglesDegrees = 1×3

         0         0   90.0000

Input Arguments
quat — Quaternion to convert to Euler angles
scalar | vector | matrix | multidimensional array

Quaternion to convert to Euler angles, specified as a scalar, vector, matrix, or multidimensional array
of quaternions.
Data Types: quaternion

rotationSequence — Rotation sequence
'ZYX' | 'ZYZ' | 'ZXY' | 'ZXZ' | 'YXZ' | 'YXY' | 'YZX' | 'YZY' | 'XYZ' | 'XYX' | 'XZY' | 'XZX'

Rotation sequence of Euler angle representation, specified as a character vector or string.

The rotation sequence defines the order of rotations about the axes. For example, if you specify a
rotation sequence of 'YZX':

1 The first rotation is about the y-axis.
2 The second rotation is about the new z-axis.
3 The third rotation is about the new x-axis.

Data Types: char | string
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rotationType — Type of rotation
'point' | 'frame'

Type of rotation, specified as 'point' or 'frame'.

In a point rotation, the frame is static and the point moves. In a frame rotation, the point is static and
the frame moves. Point rotation and frame rotation define equivalent angular displacements but in
opposite directions.

Data Types: char | string

Output Arguments
eulerAngles — Euler angle representation (degrees)
N-by-3 matrix

Euler angle representation in degrees, returned as a N-by-3 matrix. N is the number of quaternions in
the quat argument.

For each row of eulerAngles, the first column corresponds to the first axis in the rotation sequence,
the second column corresponds to the second axis in the rotation sequence, and the third column
corresponds to the third axis in the rotation sequence.

The data type of the Euler angles representation is the same as the underlying data type of quat.
Data Types: single | double

Version History
Introduced in R2018b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
euler | rotateframe | rotatepoint

Objects
quaternion
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exp
Exponential of quaternion array

Syntax
B = exp(A)

Description
B = exp(A) computes the exponential of the elements of the quaternion array A.

Examples

Exponential of Quaternion Array

Create a 4-by-1 quaternion array A.

A = quaternion(magic(4))

A = 4x1 quaternion array
     16 +  2i +  3j + 13k
      5 + 11i + 10j +  8k
      9 +  7i +  6j + 12k
      4 + 14i + 15j +  1k

Compute the exponential of A.

B = exp(A)

B = 4x1 quaternion array
     5.3525e+06 + 1.0516e+06i + 1.5774e+06j + 6.8352e+06k
        -57.359 -     89.189i -     81.081j -     64.865k
        -6799.1 +     2039.1i +     1747.8j +     3495.6k
          -6.66 +     36.931i +     39.569j +     2.6379k

Input Arguments
A — Input quaternion
scalar | vector | matrix | multidimensional array

Input quaternion, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Result
scalar | vector | matrix | multidimensional array

 exp
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Result of quaternion exponential, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + bi + c j + dk = a + v, the exponential is computed by

exp(A) = ea cos v + v
v sin v

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.^,power | log

Objects
quaternion
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gazebogenmsg
Generate dependencies for Gazebo custom message support

Syntax
gazebogenmsg(folderpath)
gazebogenmsg(folderpath,Name,Value)

Description
gazebogenmsg(folderpath) generates dependencies for Gazebo custom message support using
the protocol buffer (protobuf) files (.proto) in the specified folder folderpath. It then outputs the
generated dependency files to the same folder. The function expects one or more .proto files in the
same folder. See “Algorithms” on page 2-75 for more information about using Simulink to
communicate with Gazebo, as well as sending and receiving custom messages.

gazebogenmsg(folderpath,Name,Value) specifies options using one or more name-value pair
arguments.

For example, 'GazeboVersion','Gazebo 10' sets the Gazebo message version to Gazebo 10.

Examples

Generate Dependencies for User-Defined Gazebo Custom Message

Create a folder in a local directory.

folderPath = fullfile(pwd,'customMessage')

folderPath = 
'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage'

mkdir(folderPath)

Create a .proto file inside the folder and define protobuf custom message fields.

messageDefinition = {'message MyPose'
                     '{'
                     '   required double x = 1;'
                     '   required double y = 2;'
                     '   required double z = 3;'
                     '}'};
fileID = fopen(fullfile(folderPath,'MyPose.proto'),'w');
fprintf(fileID,'%s\n',messageDefinition{:});
fclose(fileID);

Use the gazebogenmsg function to generate dependences in the created folder.

gazebogenmsg(folderPath)

Validating ...
Selected compiler details: "Microsoft Visual C++ 2019 16.0"

 gazebogenmsg
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[libprotobuf WARNING] No syntax specified for the proto file: MyPose.proto. Please use 'syntax = "proto2";' or 'syntax = "proto3";' to specify a syntax version. (Defaulted to proto2 syntax.) 
Building shared library ...
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26726 for x64 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
MyPose.pb.cc 
Microsoft (R) Incremental Linker Version 14.15.26726.0 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
/out:MyPose.pb.dll  
/dll  
/implib:MyPose.pb.lib  
/LIBPATH:B:\matlab\toolbox\shared\robotics\externalDependency\libprotobuf\lib  
libprotobuf3.lib  
/OUT:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.dll  
/IMPLIB:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.lib  
C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install\MyPose.pb.obj  
   Creating library C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.lib and object C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.exp 
Building MEX for "MyPose.proto" file ...
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building custom message utilities  ...
DONE.
 
To use the gazebo custom messages, execute following commands:
 
addpath('C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install')
savepath

Use the following commands to add and save the install path.

addpath(fullfile(folderPath,'install'))

savepath

Create a Gazebo plugin package 'MyPlugin' inside the custom message folder using the
packageGazeboPlugin function.

packageGazeboPlugin(fullfile(folderPath,'MyPlugin'),folderPath)

Generate Dependencies for Built-in Gazebo Message

Create a folder in a local directory.

folderPath = fullfile(pwd,'customMessage');
mkdir(folderPath)
cd(folderPath)

Use the gazebogenmsg function to generate dependencies for a built-in gazebo message in the
specified folder.

gazebogenmsg(folderPath,"GazeboMessageList","gazebo.msgs.Image");
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Validating ...
Selected compiler details: "Microsoft Visual C++ 2019 16.0"
Building shared library ...
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26726 for x64 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
image.pb.cc 
Microsoft (R) Incremental Linker Version 14.15.26726.0 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
/out:image.pb.dll  
/dll  
/implib:image.pb.lib  
/LIBPATH:B:\matlab\toolbox\shared\robotics\externalDependency\libprotobuf\lib  
libprotobuf3.lib  
/OUT:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.dll  
/IMPLIB:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.lib  
C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install\image.pb.obj  
   Creating library C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.lib and object C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.exp 
Building MEX for "image.proto" file ...
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building custom message utilities  ...
DONE.
 
To use the gazebo custom messages, execute following commands:
 
addpath('C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install')
savepath

Use the following commands to add and save the install path.

addpath(fullfile(folderPath,'install'))

savepath

Create a Gazebo plugin package using the packageGazeboPlugin function.

packageGazeboPlugin

Input Arguments
folderpath — Path of custom message folder
string scalar | character vector

Path of the custom message folder, specified as a string scalar or character vector. The folder must
contain one or more .proto files. The path also specifies the location in which to output the
generated dependency files.
Example: gazebogenmsg('C:\GazeboCustomMsg')
Data Types: char | string
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'GazeboMessageList','gazebo.msgs.IMU' generates dependences for the built-in
Gazebo message gazebo.msgs.IMU.

GazeboVersion — Gazebo message version
'Gazebo 9' (default) | 'Gazebo 10' | 'Gazebo 11'

Gazebo message version, specified as the comma-separated pair consisting of 'GazeboVersion'
and either 'Gazebo 9', 'Gazebo 10' or 'Gazebo 11'.
Example: 'GazeboVersion','Gazebo 10'
Data Types: char | string

GazeboMessageList — Gazebo built-in messages
string scalar | character vector

Gazebo built-in messages, specified as the comma-separated pair consisting of
'GazeboMessageList' and one or more built-in messages from the list of valid Gazebo messages.

To get a list of valid Gazebo messages, press Tab after entering the 'GazeboMessageList'
argument name. You can select a valid Gazebo message value from the list.
Example: 'GazeboMessageList','gazebo.msgs.Altimeter'
Data Types: char | string

Limitations
• The gazebogenmsg function supports the proto2 version of the protobuf language. The function

does not support the proto2 fields map, group, extend, extensions, and reserved.
• You can run the Simulink model multiple times but you need to restart MATLAB to run

gazebogenmsg function again.
• gazebogenmsg function not supported with MATLAB Compiler™.

Tips
Supported Compilers

Windows: Microsoft Visual C++ 14.0 and later

Linux: g++ 6.0.0 and later

Mac: Xcode Clang++ 10.0.0 and later
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Algorithms
1 Add and save the install path by running the command presented at the end of gazebogenmsg

function output.
2 Use the packageGazeboPlugin function to package the plugin.
3 Copy, install and run the plugin on the Gazebo machine.
4 Use the Gazebo Publish Simulink block to send the custom messages to the Gazebo machine.
5 Use the Gazebo Subscribe Simulink block to receive the custom messages from the Gazebo

machine.

Version History
Introduced in R2020b

References
[1] Google Developers. “Language Guide | Protocol Buffers.” Accessed July 17, 2020. https://

developers.google.com/protocol-buffers/docs/proto.

See Also
packageGazeboPlugin | Gazebo Publish | Gazebo Subscribe

Topics
“Perform Co-Simulation between Simulink and Gazebo”
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gzinit
Initialize connection settings for Gazebo Co-Simulation MATLAB interface

Syntax
gzinit
gzinit(HostIP)
gzinit(HostIP,HostPort)
gzinit(HostIP,HostPort,Timeout)

Description
gzinit initializes connection settings and checks connectivity with the Gazebo plugin running on
localhost and port 14581. This syntax sets response timeout to 1 second.

gzinit(HostIP) specifies the host name or IP address of the Gazebo plugin HostIP.

gzinit(HostIP,HostPort) specifies the port number HostPort.

gzinit(HostIP,HostPort,Timeout) specifies the response timeout Timeout in seconds.

Examples

Perform Co-Simulation Between MATLAB and Gazebo

Set up a simulation between MATLAB and Gazebo, receive data from Gazebo, and send commands to
Gazebo.

Prerequisite

Follow the instructions in “Perform Co-Simulation between Simulink and Gazebo” to download the
Linux virtual machine (VM) with Gazebo and set up multiSensorPluginTest.world.

Configure and Perform Gazebo Co-Simulation

Initialize connection settings and check connectivity with the Gazebo plugin running on
192.168.198.129 and port 14581.

gzinit("192.168.198.129",14581)

Assign and Retrieve Gazebo Model Information

List the models available in the Gazebo world.

modelList = gzmodel("list")

modelList = 1×11 string
    "ground_plane"    "unit_box"    "camera0"    "camera1"    "depth_camera0"    "depth_camera1"    "imu0"    "imu1"    "hokuyo0"    "hokuyo1"    "velodyne"

Assign values to the Position and SelfCollide parameters of the unit_box model.
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[status,message] = gzmodel("set","unit_box","Position",[2 2 0.5],"SelfCollide","on")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Position parameter set successfully."    "SelfCollide parameter set successfully."

Retrieve the values of the Position and SelfCollide parameters of the unit_box model.

[position,selfcollide] = gzmodel("get","unit_box","Position","SelfCollide")

position = 1×3

                         2                         2           0.4999999999951

selfcollide = logical
   1

Assign and Retrieve Gazebo Model Link Information

List the links available in the unit_box model.

linkList = gzlink("list","unit_box")

linkList = 
"link"

Assign values to the link parameters Mass and Gravity of the link link in the unit_box model.

[status,message] = gzlink("set","unit_box","link","Mass",2,"Gravity","off")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Mass parameter set successfully."    "Gravity parameter set successfully."

Retrieve the values of the link parameters Mass and Gravity of the link link in the unit_box
model.

[mass,gravity] = gzlink("get","unit_box","link","Mass","Gravity")

mass = 
     2

gravity = logical
   0
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Assign and Retrieve Gazebo Model Joint Information

List the joints available in the unit_box model.

jointList = gzjoint("list","unit_box")

jointList = 
"joint"

Assign a value to the joint parameter Damping of the axis Axis0 for the joint joint in the unit_box
model.

[status,message] = gzjoint("set","unit_box","joint","Axis","0","Damping",0.25)

status = logical
   1

message = 
"Damping parameter set successfully."

Retrieve the value of the joint parameter Damping of the axis Axis0 for the joint joint in the
unit_box model.

damping = gzjoint("get","unit_box","joint","Axis0","Damping")

damping = 
                      0.25

Reset all Gazebo model configurations.

gzworld("reset")

Input Arguments
HostIP — Host name or IP address of machine with Gazebo plugin
localhost (default) | string scalar | character vector

The host name or IP address of the machine with the Gazebo plugin, specified as a string scalar or
character vector.
Example: gzinit("172.18.250.191")

HostPort — Port number of machine with Gazebo plugin
14581 (default) | positive integer

Port number of the machine with the Gazebo plugin, specified as a positive integer. The port number
must be the same as the value of 'portNumber' in the Gazebo '.world' file.
Example: gzinit("172.18.250.191",14581)

Timeout — Response timeout
1 (default) | positive numeric scalar

Response timeout, specified as a positive numeric scalar. This value determines how long the client
will wait for a response from the server, in seconds. Set a higher Timeout value for a network with
poor connectivity.
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Example: gzinit("172.18.250.191",14581,10)

Limitations
• gzinit function not supported with MATLAB Compiler.

Version History
Introduced in R2021a

See Also
gzlink | gzjoint | gzmodel | gzworld

 gzinit

2-79



gzjoint
Assign and retrieve Gazebo model joint information

Syntax
List = gzjoint("list",modelname)
[Status,Message] = gzjoint("set",modelname,jointname,Name,Value)
[Output1,...,OutputN] = gzjoint("get",modelname,jointname,params)

Description
List = gzjoint("list",modelname) returns and displays a list of joint names List of the
specified Gazebo model modelname.

[Status,Message] = gzjoint("set",modelname,jointname,Name,Value) assigns values to
the joint parameters using one or more name-value pair arguments for the specified Gazebo model
modelname and the joint jointname. The function returns the status of the value assignments
Status and the message of their success and failure Message. For example,
gzjoint("set","unit_box","joint","Position",[2 2 0.5]) sets the position of the joint in
the model unit_box.

[Output1,...,OutputN] = gzjoint("get",modelname,jointname,params) retrieves values
of the joint parameters using one or more parameter names, params, for the specified Gazebo model
modelname and the joint jointname. The function returns one or more outputs,
Output1,...,OutputN, corresponding to the specified parameter names.

Examples

Perform Co-Simulation Between MATLAB and Gazebo

Set up a simulation between MATLAB and Gazebo, receive data from Gazebo, and send commands to
Gazebo.

Prerequisite

Follow the instructions in “Perform Co-Simulation between Simulink and Gazebo” to download the
Linux virtual machine (VM) with Gazebo and set up multiSensorPluginTest.world.

Configure and Perform Gazebo Co-Simulation

Initialize connection settings and check connectivity with the Gazebo plugin running on
192.168.198.129 and port 14581.

gzinit("192.168.198.129",14581)

Assign and Retrieve Gazebo Model Information

List the models available in the Gazebo world.

modelList = gzmodel("list")
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modelList = 1×11 string
    "ground_plane"    "unit_box"    "camera0"    "camera1"    "depth_camera0"    "depth_camera1"    "imu0"    "imu1"    "hokuyo0"    "hokuyo1"    "velodyne"

Assign values to the Position and SelfCollide parameters of the unit_box model.

[status,message] = gzmodel("set","unit_box","Position",[2 2 0.5],"SelfCollide","on")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Position parameter set successfully."    "SelfCollide parameter set successfully."

Retrieve the values of the Position and SelfCollide parameters of the unit_box model.

[position,selfcollide] = gzmodel("get","unit_box","Position","SelfCollide")

position = 1×3

                         2                         2           0.4999999999951

selfcollide = logical
   1

Assign and Retrieve Gazebo Model Link Information

List the links available in the unit_box model.

linkList = gzlink("list","unit_box")

linkList = 
"link"

Assign values to the link parameters Mass and Gravity of the link link in the unit_box model.

[status,message] = gzlink("set","unit_box","link","Mass",2,"Gravity","off")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Mass parameter set successfully."    "Gravity parameter set successfully."

Retrieve the values of the link parameters Mass and Gravity of the link link in the unit_box
model.

[mass,gravity] = gzlink("get","unit_box","link","Mass","Gravity")

mass = 
     2
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gravity = logical
   0

Assign and Retrieve Gazebo Model Joint Information

List the joints available in the unit_box model.

jointList = gzjoint("list","unit_box")

jointList = 
"joint"

Assign a value to the joint parameter Damping of the axis Axis0 for the joint joint in the unit_box
model.

[status,message] = gzjoint("set","unit_box","joint","Axis","0","Damping",0.25)

status = logical
   1

message = 
"Damping parameter set successfully."

Retrieve the value of the joint parameter Damping of the axis Axis0 for the joint joint in the
unit_box model.

damping = gzjoint("get","unit_box","joint","Axis0","Damping")

damping = 
                      0.25

Reset all Gazebo model configurations.

gzworld("reset")

Input Arguments
modelname — Gazebo model name
string scalar | character vector

Gazebo model name, specified as a string scalar or character vector.
Data Types: char | string

jointname — Associated joint name
string scalar | character vector

Associated joint name, specified as a string scalar or character vector.
Data Types: char | string

params — Gazebo model joint parameters
string scalars | character vectors

Gazebo model joint parameters, specified as a comma-separated list of string scalars or character
vectors. Specify the list of parameters you want to retrieve the values, from these tables.
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Gazebo model joint axis parameters for Axis0 or Axis1, specified as the comma-separated
arguments consisting of "Axis0" or "Axis1", respectively, and one or more of the options in this
table.

Option Name Description
"Angle" Get the angle parameter of the Gazebo model

joint axis for Axis0 or Axis1.
"Damping" Get the damping parameter of the Gazebo model

joint axis for Axis0 or Axis1.
"Friction" Get the friction parameter of the Gazebo model

joint axis for Axis0 or Axis1.
"XYZ" Get the position of the Gazebo model joint axis

for Axis0 or Axis1.

Gazebo model joint parameters:

Parameters Description
"CFM" Get the CFM parameter of the Gazebo model

joint.
"FudgeFactor" Get the fudge factor parameter of the Gazebo

model joint.
"Orientation" Get the orientation parameter of the Gazebo

model joint.
"Position" Get the position of the Gazebo model joint.
"SuspensionCFM" Get the suspension CFM parameter of the Gazebo

model joint.
"SuspensionERP" Get the suspension ERP parameter of the Gazebo

model joint.

Example: [ang,damp,cfm,pos] =
gzjoint("get","unit_box","joint","Axis0","Angle","Damping","CFM","Position")

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: For example, gzjoint("set","unit_box","joint","Position",[2 2 0.5]) sets
the position of the joint in the model unit_box.

Axis — Gazebo model joint axis parameters
"0" | "1"

Gazebo model joint axis parameters, specified as the comma-separated pair consisting of 'Axis' and
either "0" or "1". Then, specify one or more of the options in this table as the comma-separated pair
consisting of an option name and its value.
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Option Name Description
"Angle" Set the angle parameter of the Gazebo model

joint axis as a numeric scalar in radians.
"Damping" Set the damping parameter of the Gazebo model

joint axis as a numeric scalar in newton meter
second per radians.

"Friction" Set the friction parameter of the Gazebo model
joint axis as a numeric scalar in newton.

"XYZ" Set the position of the Gazebo model joint axis as
a three-element vector of the form [X Y Z] in
meters.

Example: [status,message] =
gzjoint("set","unit_box","joint","Axis","0","Damping",0.25)

Data Types: single | double

CFM — Gazebo model joint constraint force mixing (CFM) parameter
numeric scalar

Gazebo model joint CFM parameter, specified as the comma-separated pair consisting of 'CFM' and a
numeric scalar.
Example: [status,message] = gzjoint("set","unit_box","joint","CFM",1);
Data Types: single | double

FudgeFactor — Gazebo model joint fudge factor parameter
numeric scalar

Gazebo model joint fudge factor parameter, specified as the comma-separated pair consisting of
'FudgeFactor' and a numeric scalar.
Example: [status,message] = gzjoint("set","unit_box","joint","FudgeFactor",1);
Data Types: single | double

Orientation — Gazebo model joint orientation parameter
four-element vector

Gazebo model joint orientation parameter, specified as the comma-separated pair consisting of
'Orientation' and a four-element quaternion vector of the form [w x y z].
Example: [status,message] = gzjoint("set","unit_box","joint","Orientation",[1 0
0 0]);

Data Types: single | double

Position — Gazebo model joint position
three-element vector

Gazebo model joint position parameter, specified as the comma-separated pair consisting of
'Position' and a three-element vector of the form [x y z] in meters.
Example: [status,message] = gzjoint("set","unit_box","joint","Position",[0 0
0]);
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Data Types: single | double

SuspensionCFM — Gazebo model joint suspension CFM parameter
numeric scalar

Gazebo model joint suspension CFM parameter, specified as the comma-separated pair consisting of
'SuspensionCFM' and a numeric scalar.
Example: [status,message] =
gzjoint("set","unit_box","joint","SuspensionCFM",1);

Data Types: single | double

SuspensionERP — Gazebo model joint suspension error reduction parameter (ERP)
parameter
numeric scalar

Gazebo model joint suspension ERP parameter, specified as the comma-separated pair consisting of
'SuspensionERP' and a numeric scalar.
Example: [status,message] =
gzjoint("set","unit_box","joint","SuspensionERP",1);

Data Types: single | double

Output Arguments
List — List of joints in model
cell array of character vectors

List of joints in the model, returned as a cell array of character vectors.

Status — Status of values assigned to parameters
logical array

Status of the values assigned to the parameters, returned as a logical array.

Message — Success or failure message
string array

Success or failure message, returned as a string array.

Output1,...,OutputN — Values of specified parameters
numeric scalar | numeric vector

Values of specified parameters, returned as a numeric scalar or numeric vector based on the specified
parameters. The following tables shows the returned data type of parameter values.

Gazebo model joint axis parameters for Axis0 or Axis1:

Option Name Description
"Angle" Gazebo model joint axis angle parameter for

Axis0 or Axis1, returns a numeric scalar in
radians.
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Option Name Description
"Damping" Gazebo model joint axis damping parameter for

Axis0 or Axis1, returns a numeric scalar in
newton meter second per radians.

"Friction" Gazebo model joint axis friction parameter for
Axis0 or Axis1, returns a numeric scalar in
newton.

"XYZ" Gazebo model joint axis position parameter for
Axis0 or Axis1, returns a three-element vector
of the form [X Y Z] in meters.

Gazebo model joint parameters:

Parameters Description
"CFM" Gazebo model joint CFM parameter, returns a

numeric scalar.
"FudgeFactor" Gazebo model joint fudge factor parameter,

returns a numeric scalar.
"Orientation" Gazebo model joint orientation parameter,

returns a four-element quaternion vector of the
form [w x y z].

"Position" Gazebo model joint position parameter, returns a
three-element vector of the form [x y z] in
meters.

"SuspensionCFM" Gazebo model joint suspension CFM parameter,
returns a numeric scalar.

"SuspensionERP" Gazebo model joint suspension ERP parameter,
returns a numeric scalar.

Limitations
• gzjoint function not supported with MATLAB Compiler.

Version History
Introduced in R2021a

See Also
gzinit | gzlink | gzmodel | gzworld

2 Functions

2-86



gzlink
Assign and retrieve Gazebo model link information

Syntax
List = gzlink("list",modelname)
[Status,Message] = gzlink("set",modelname,linkname,Name,Value)
[Output1,...,OutputN] = gzlink("get",modelname,linkname,params)

Description
List = gzlink("list",modelname) returns and displays a list of link names List in the
specified Gazebo model modelname.

[Status,Message] = gzlink("set",modelname,linkname,Name,Value) assigns values to
the link parameters using one or more name-value pair arguments for the specified Gazebo model
modelname and the link linkname. The function returns the status of the value assignments Status
and the message of their success and failure Message. For example,
gzlink("set","unit_box","link","Position",[2 2 0.5]) sets the position of the link in
the model unit_box.

[Output1,...,OutputN] = gzlink("get",modelname,linkname,params) retrieves values of
the link parameters using one or more parameter name, params, for the specified Gazebo model
modelname and the link linkname. The function returns one or more outputs,
Output1,...,OutputN, corresponding to the specified parameter names.

Examples

Perform Co-Simulation Between MATLAB and Gazebo

Set up a simulation between MATLAB and Gazebo, receive data from Gazebo, and send commands to
Gazebo.

Prerequisite

Follow the instructions in “Perform Co-Simulation between Simulink and Gazebo” to download the
Linux virtual machine (VM) with Gazebo and set up multiSensorPluginTest.world.

Configure and Perform Gazebo Co-Simulation

Initialize connection settings and check connectivity with the Gazebo plugin running on
192.168.198.129 and port 14581.

gzinit("192.168.198.129",14581)

Assign and Retrieve Gazebo Model Information

List the models available in the Gazebo world.

modelList = gzmodel("list")
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modelList = 1×11 string
    "ground_plane"    "unit_box"    "camera0"    "camera1"    "depth_camera0"    "depth_camera1"    "imu0"    "imu1"    "hokuyo0"    "hokuyo1"    "velodyne"

Assign values to the Position and SelfCollide parameters of the unit_box model.

[status,message] = gzmodel("set","unit_box","Position",[2 2 0.5],"SelfCollide","on")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Position parameter set successfully."    "SelfCollide parameter set successfully."

Retrieve the values of the Position and SelfCollide parameters of the unit_box model.

[position,selfcollide] = gzmodel("get","unit_box","Position","SelfCollide")

position = 1×3

                         2                         2           0.4999999999951

selfcollide = logical
   1

Assign and Retrieve Gazebo Model Link Information

List the links available in the unit_box model.

linkList = gzlink("list","unit_box")

linkList = 
"link"

Assign values to the link parameters Mass and Gravity of the link link in the unit_box model.

[status,message] = gzlink("set","unit_box","link","Mass",2,"Gravity","off")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Mass parameter set successfully."    "Gravity parameter set successfully."

Retrieve the values of the link parameters Mass and Gravity of the link link in the unit_box
model.

[mass,gravity] = gzlink("get","unit_box","link","Mass","Gravity")

mass = 
     2
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gravity = logical
   0

Assign and Retrieve Gazebo Model Joint Information

List the joints available in the unit_box model.

jointList = gzjoint("list","unit_box")

jointList = 
"joint"

Assign a value to the joint parameter Damping of the axis Axis0 for the joint joint in the unit_box
model.

[status,message] = gzjoint("set","unit_box","joint","Axis","0","Damping",0.25)

status = logical
   1

message = 
"Damping parameter set successfully."

Retrieve the value of the joint parameter Damping of the axis Axis0 for the joint joint in the
unit_box model.

damping = gzjoint("get","unit_box","joint","Axis0","Damping")

damping = 
                      0.25

Reset all Gazebo model configurations.

gzworld("reset")

Input Arguments
modelname — Gazebo model name
string scalar | character vector

Gazebo model name, specified as a string scalar or character vector.
Data Types: char | string

linkname — Associated link name
string scalar | character vector

Associated link name, specified as a string scalar or character vector.
Data Types: char | string

params — Gazebo model link parameters
string scalars | character vectors

Gazebo model link parameters, specified as a comma-separated list of string scalars or character
vectors. Specify the list of parameters you want to retrieve the values, from this table.
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Parameters Description
"Canonical" Get the canonical parameter of the Gazebo model

link.
"EnableWind" Get the wind parameter of the Gazebo model link.
"Gravity" Get the gravity parameter of the Gazebo model

link.
"IsStatic" Get the IsStatic parameter of the Gazebo model

link.
"Kinematic" Get the kinematic parameter of the Gazebo model

link.
"Mass" Get the mass parameter of the Gazebo model

link.
"Orientation" Get the orientation parameter of the Gazebo

model link.
"Position" Get the position parameter of the Gazebo model

link.
"PrincipalMoments" Get the principal moments parameter of the

Gazebo model link.
"ProductOfInertia" Get the product of inertia parameter of the

Gazebo model link.
"SelfCollide" Get the SelfCollide parameter of the Gazebo

model link.

Example: [mass,gravity] = gzlink("get","unit_box","link","Mass","Gravity")
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: For example, gzlink("set","unit_box","link","Position",[2 2 0.5]) sets the
position of the link in the model unit_box.

Canonical — Gazebo model link canonical parameter
'on' | 'off'

Gazebo model link canonical parameter, specified as the comma-separated pair consisting of
'Canonical' and either 'on' or 'off'.
Example: [status,message] = gzlink("set","unit_box","link","Canonical","off");
Data Types: char | string

EnableWind — Gazebo model link wind parameter
'on' | 'off'
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Gazebo model link wind parameter, specified as the comma-separated pair consisting of
'EnableWind' and either 'on' or 'off'.
Example: [status,message] = gzlink("set","unit_box","link","EnableWind","off");
Data Types: char | string

Gravity — Gazebo model link gravity parameter
'on' | 'off'

Gazebo model link gravity parameter, specified as the comma-separated pair consisting of
'Gravity' and either 'on' or 'off'.
Example: [status,message] = gzlink("set","unit_box","link","Gravity","off");
Data Types: char | string

IsStatic — Gazebo model link IsStatic parameter
'on' | 'off'

Gazebo model link IsStatic parameter, specified as the comma-separated pair consisting of
'IsStatic' and either 'on' or 'off'.
Example: [status,message] = gzlink("set","unit_box","link","IsStatic","off");
Data Types: char | string

Kinematic — Gazebo model link kinematic parameter
'on' | 'off'

Gazebo model link kinematic parameter, specified as the comma-separated pair consisting of
'Kinematic' and either 'on' or 'off'.
Example: [status,message] = gzlink("set","unit_box","link","Kinematic","off");
Data Types: char | string

Mass — Gazebo model link mass parameter
numeric scalar

Gazebo model link mass parameter, specified as the comma-separated pair consisting of 'Mass' and
a numeric scalar in kilograms.
Example: [status,message] = gzlink("set","unit_box","link","Mass",1);
Data Types: single | double

Orientation — Gazebo model link orientation parameter
four-element vector

Gazebo model link orientation parameter, specified as the comma-separated pair consisting of
'Orientation' and a four-element quaternion vector of the form [w x y z].
Example: [status,message] = gzlink("set","unit_box","link","Orientation",[1 0 0
0]);

Data Types: single | double

Position — Gazebo model link position
three-element vector
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Gazebo model link position parameter, specified as the comma-separated pair consisting of
'Position' and a three-element vector of the form [x y z] in meters.
Example: [status,message] = gzlink("set","unit_box","link","Position",[0 0 0]);
Data Types: single | double

PrincipalMoments — Gazebo model link principal moments
three-element vector

Gazebo model link principal moments parameter, specified as the comma-separated pair consisting of
'PrincipalMoments' and a three-element vector of the form [ixx iyy izz] in kilogram square
meters.
Example: [status,message] = gzlink("set","unit_box","link","PrincipalMoments",
[0 0 0]);

Data Types: single | double

ProductOfInertia — Gazebo model link product of inertia
three-element vector

Gazebo model link product of inertia parameter, specified as the comma-separated pair consisting of
'ProductOfInertia' and a three-element vector of the form [ixy ixz iyz] in kilogram square
meters.
Example: [status,message] = gzlink("set","unit_box","link","ProductOfInertia",
[0 0 0]);

Data Types: single | double

SelfCollide — Gazebo model link SelfCollide parameter
'on' | 'off'

Gazebo model link SelfCollide parameter, specified as the comma-separated pair consisting of
'SelfCollide' and either 'on' or 'off'.
Example: [status,message] =
gzlink("set","unit_box","link","SelfCollide","off");

Data Types: char | string

Output Arguments
List — List of links in model
cell array of character vectors

List of links in the model, returned as a cell array of character vectors.

Status — Status of values assigned to parameters
logical array

Status of the values assigned to the parameters, returned as a logical array.

Message — Success or failure message
string array

Success or failure message, returned as a string array.
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Output1,...,OutputN — Values of specified parameters
logical scalar | numeric scalar | numeric vector

Values of specified parameters, returned as a logical or numeric vector based on the specified
parameters. The following table shows the returned data type of parameter values.

Parameters Description
"Canonical" Gazebo model link canonical parameter, returns a

logical scalar.
"EnableWind" Gazebo model link wind parameter, returns a

logical scalar.
"Gravity" Gazebo model link gravity parameter, returns a

logical scalar.
"IsStatic" Gazebo model link IsStatic parameter, returns a

logical scalar.
"Kinematic" Gazebo model link kinematic parameter, returns a

logical scalar.
"Mass" Gazebo model link mass parameter, returns a

numeric scalar in kilograms.
"Orientation" Gazebo model link orientation parameter, returns

a four-element quaternion vector of the form [w x
y z].

"Position" Gazebo model link position parameter, returns a
three-element vector of the form [x y z] in meters.

"PrincipalMoments" Gazebo model link principal moments parameter,
returns a three-element vector of the form [ixx
iyy izz] in kilogram square meters.

"ProductOfInertia" Gazebo model link product of inertia parameter,
returns a three-element vector of the form [ixy ixz
iyz] in kilogram square meters.

"SelfCollide" Gazebo model link SelfCollide parameter, returns
a logical scalar.

Limitations
• gzlink function not supported with MATLAB Compiler.

Version History
Introduced in R2021a

See Also
gzinit | gzjoint | gzmodel | gzworld

 gzlink

2-93



gzmodel
Assign and retrieve Gazebo model information

Syntax
List = gzmodel("list")
[Links,Joints] = gzmodel("info",modelname)
[Status,Message] = gzmodel("set",modelname,Name,Value)
[Output1,...,OutputN] = gzmodel("get",modelname,params)
sdfString = gzmodel("importSDF",modelname)

Description
List = gzmodel("list") returns and displays a list of model names List available in the Gazebo
world.

If you do not define the output argument, the model names are returned in the MATLAB Command
Window.

[Links,Joints] = gzmodel("info",modelname) returns and displays a list of link names
Links and joint names Joints of the specified Gazebo model modelname.

If you do not define the output argument, the model info is returned in the MATLAB Command
Window.

[Status,Message] = gzmodel("set",modelname,Name,Value) assigns values to the model
parameters using one or more name-value pair arguments for the specified Gazebo model
modelname. The function returns the status of the value assignments Status and the message of
their success and failure Message. For example, gzmodel("set","unit_box","Position",[2 2
0.5]) sets the position of the model unit_box.

If you do not define the output argument, the status and message are returned in the MATLAB
Command Window.

[Output1,...,OutputN] = gzmodel("get",modelname,params) retrieves values of the model
parameters using one or more parameter name, params, for the specified Gazebo model modelname.
The function returns one or more outputs Output1,...,OutputN, corresponding to the specified
parameter names.

If you do not define the output argument, the model parameters are returned in the MATLAB
Command Window.

sdfString = gzmodel("importSDF",modelname) returns the Simulation Description Format
(SDF) of the specified Gazebo model as a string.

If you do not define the output argument, the SDF model description are returned in the MATLAB
Command Window.

Examples
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Perform Co-Simulation Between MATLAB and Gazebo

Set up a simulation between MATLAB and Gazebo, receive data from Gazebo, and send commands to
Gazebo.

Prerequisite

Follow the instructions in “Perform Co-Simulation between Simulink and Gazebo” to download the
Linux virtual machine (VM) with Gazebo and set up multiSensorPluginTest.world.

Configure and Perform Gazebo Co-Simulation

Initialize connection settings and check connectivity with the Gazebo plugin running on
192.168.198.129 and port 14581.

gzinit("192.168.198.129",14581)

Assign and Retrieve Gazebo Model Information

List the models available in the Gazebo world.

modelList = gzmodel("list")

modelList = 1×11 string
    "ground_plane"    "unit_box"    "camera0"    "camera1"    "depth_camera0"    "depth_camera1"    "imu0"    "imu1"    "hokuyo0"    "hokuyo1"    "velodyne"

Assign values to the Position and SelfCollide parameters of the unit_box model.

[status,message] = gzmodel("set","unit_box","Position",[2 2 0.5],"SelfCollide","on")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Position parameter set successfully."    "SelfCollide parameter set successfully."

Retrieve the values of the Position and SelfCollide parameters of the unit_box model.

[position,selfcollide] = gzmodel("get","unit_box","Position","SelfCollide")

position = 1×3

                         2                         2           0.4999999999951

selfcollide = logical
   1

Assign and Retrieve Gazebo Model Link Information

List the links available in the unit_box model.

linkList = gzlink("list","unit_box")
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linkList = 
"link"

Assign values to the link parameters Mass and Gravity of the link link in the unit_box model.

[status,message] = gzlink("set","unit_box","link","Mass",2,"Gravity","off")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Mass parameter set successfully."    "Gravity parameter set successfully."

Retrieve the values of the link parameters Mass and Gravity of the link link in the unit_box
model.

[mass,gravity] = gzlink("get","unit_box","link","Mass","Gravity")

mass = 
     2

gravity = logical
   0

Assign and Retrieve Gazebo Model Joint Information

List the joints available in the unit_box model.

jointList = gzjoint("list","unit_box")

jointList = 
"joint"

Assign a value to the joint parameter Damping of the axis Axis0 for the joint joint in the unit_box
model.

[status,message] = gzjoint("set","unit_box","joint","Axis","0","Damping",0.25)

status = logical
   1

message = 
"Damping parameter set successfully."

Retrieve the value of the joint parameter Damping of the axis Axis0 for the joint joint in the
unit_box model.

damping = gzjoint("get","unit_box","joint","Axis0","Damping")

damping = 
                      0.25

Reset all Gazebo model configurations.
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gzworld("reset")

Input Arguments
modelname — Gazebo model name
string scalar | character vector

Gazebo model name, specified as a string scalar or character vector.
Data Types: char | string

params — Gazebo model parameters
string scalars | character vectors

Gazebo model parameters, specified as a comma-separated list of string scalars or character vectors.
Specify the list of parameters you want to retrieve the values, from this table.

Parameters Description
"EnableWind" Get the wind parameter of the Gazebo model.
"IsStatic" Get the IsStatic parameter of the Gazebo model.
"Orientation" Get the orientation parameter of the Gazebo

model.
"Position" Get the position parameter of the Gazebo model.
"SelfCollide" Get the SelfCollide parameter of the Gazebo

model.

Example: [position,selfcollide] =
gzmodel("get","unit_box","Position","SelfCollide")

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: For example, gzmodel("set","unit_box","Position",[2 2 0.5]) sets the position
of the model unit_box.

EnableWind — Gazebo model wind parameter
'on' | 'off'

Gazebo model wind parameter, specified as the comma-separated pair consisting of 'EnableWind'
and either 'on' or 'off'.
Example: [status,message] = gzmodel("set","unit_box","EnableWind","off");
Data Types: char | string

IsStatic — Gazebo model IsStatic parameter
'on' | 'off'
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Gazebo model IsStatic parameter, specified as the comma-separated pair consisting of 'IsStatic'
and either 'on' or 'off'.
Example: [status,message] = gzmodel("set","unit_box","IsStatic","off");
Data Types: char | string

Orientation — Gazebo model orientation parameter
four-element vector

Gazebo model orientation parameter, specified as the comma-separated pair consisting of
'Orientation' and a four-element quaternion vector of the form [w x y z].
Example: [status,message] = gzmodel("set","unit_box","Orientation",[1 0 0 0]);
Data Types: single | double

Position — Gazebo model position
three-element vector

Gazebo model position parameter, specified as the comma-separated pair consisting of 'Position'
and a three-element vector of the form [x y z] in meters.
Example: [status,message] = gzmodel("set","unit_box","Position",[0 0 0]);
Data Types: single | double

SelfCollide — Gazebo model SelfCollide parameter
'on' | 'off'

Gazebo model SelfCollide parameter, specified as the comma-separated pair consisting of
'SelfCollide' and either 'on' or 'off'.
Example: [status,message] = gzmodel("set","unit_box","SelfCollide","off");
Data Types: char | string

Output Arguments
List — List of models
cell array of character vectors

List of models, returned as a cell array of character vectors.

Links — List of links in model
cell array of character vectors

List of links in the model, returned as a cell array of character vectors.

Joints — List of joints in model
cell array of character vectors

List of joints in the model, returned as a cell array of character vectors.

Status — Status of values assigned to parameters
logical array

Status of the values assigned to the parameters, returned as a logical array.
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Message — Success or failure message
string array

Success or failure message, returned as a string array.

Output1,...,OutputN — Values of specified parameters
logical scalar | numeric vector

Values of specified parameters, returned as a logical or numeric vector based on the specified
parameters. The following table shows the returned data type of parameter values.

Parameters Description
"EnableWind" Gazebo model wind parameter, returns a logical

scalar.
"IsStatic" Gazebo model IsStatic parameter, returns a

logical scalar.
"Orientation" Gazebo model orientation parameter, returns a

four-element quaternion vector of the form [w x y
z].

"Position" Gazebo model position parameter, returns a
three-element vector of the form [x y z] in meters.

"SelfCollide" Gazebo model SelfCollide parameter, returns a
logical scalar.

Limitations
• gzmodel function not supported with MATLAB Compiler.

Version History
Introduced in R2021a

See Also
gzinit | gzlink | gzjoint | gzworld
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gzworld
Interact with Gazebo world

Syntax
gzworld("reset")

Description
gzworld("reset") resets all Gazebo model configurations and Gazebo simulation time.

Examples

Perform Co-Simulation Between MATLAB and Gazebo

Set up a simulation between MATLAB and Gazebo, receive data from Gazebo, and send commands to
Gazebo.

Prerequisite

Follow the instructions in “Perform Co-Simulation between Simulink and Gazebo” to download the
Linux virtual machine (VM) with Gazebo and set up multiSensorPluginTest.world.

Configure and Perform Gazebo Co-Simulation

Initialize connection settings and check connectivity with the Gazebo plugin running on
192.168.198.129 and port 14581.

gzinit("192.168.198.129",14581)

Assign and Retrieve Gazebo Model Information

List the models available in the Gazebo world.

modelList = gzmodel("list")

modelList = 1×11 string
    "ground_plane"    "unit_box"    "camera0"    "camera1"    "depth_camera0"    "depth_camera1"    "imu0"    "imu1"    "hokuyo0"    "hokuyo1"    "velodyne"

Assign values to the Position and SelfCollide parameters of the unit_box model.

[status,message] = gzmodel("set","unit_box","Position",[2 2 0.5],"SelfCollide","on")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Position parameter set successfully."    "SelfCollide parameter set successfully."
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Retrieve the values of the Position and SelfCollide parameters of the unit_box model.

[position,selfcollide] = gzmodel("get","unit_box","Position","SelfCollide")

position = 1×3

                         2                         2           0.4999999999951

selfcollide = logical
   1

Assign and Retrieve Gazebo Model Link Information

List the links available in the unit_box model.

linkList = gzlink("list","unit_box")

linkList = 
"link"

Assign values to the link parameters Mass and Gravity of the link link in the unit_box model.

[status,message] = gzlink("set","unit_box","link","Mass",2,"Gravity","off")

status = 1×2 logical array

   1   1

message = 1×2 string
    "Mass parameter set successfully."    "Gravity parameter set successfully."

Retrieve the values of the link parameters Mass and Gravity of the link link in the unit_box
model.

[mass,gravity] = gzlink("get","unit_box","link","Mass","Gravity")

mass = 
     2

gravity = logical
   0

Assign and Retrieve Gazebo Model Joint Information

List the joints available in the unit_box model.

jointList = gzjoint("list","unit_box")

jointList = 
"joint"

Assign a value to the joint parameter Damping of the axis Axis0 for the joint joint in the unit_box
model.
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[status,message] = gzjoint("set","unit_box","joint","Axis","0","Damping",0.25)

status = logical
   1

message = 
"Damping parameter set successfully."

Retrieve the value of the joint parameter Damping of the axis Axis0 for the joint joint in the
unit_box model.

damping = gzjoint("get","unit_box","joint","Axis0","Damping")

damping = 
                      0.25

Reset all Gazebo model configurations.

gzworld("reset")

Limitations
• gzworld function not supported with MATLAB Compiler.

Version History
Introduced in R2021a

See Also
gzinit | gzlink | gzjoint | gzmodel
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hom2cart
Convert homogeneous coordinates to Cartesian coordinates

Syntax
cart = hom2cart(hom)

Description
cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points

h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];
c = hom2cart(h)

c = 2×3

    0.5570    1.9150    0.3152
    1.0938    1.9298    1.9412

Input Arguments
hom — Homogeneous points
n-by-k matrix

Homogeneous points, specified as an n-by-k matrix, containing n points. k must be greater than or
equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

Output Arguments
cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, returned as an n-by-(k–1) matrix, containing n points. Each row of cart
represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.
Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
cart2hom

Topics
“Coordinate Transformations in Robotics”

2 Functions

2-104



importrobot
Import rigid body tree model from URDF, SDF file, text, or Simscape Multibody model

Syntax
robot = importrobot(filename)
robot = importrobot(URDFtext)
robot = importrobot(SDFtext)
robot = importrobot( ___ ,format)
robot = importrobot( ___ ,Name,Value)

[robot,importInfo] = importrobot(model)
[robot,importInfo] = importrobot( ___ ,Name,Value)

Description
URDF or SDF Import

robot = importrobot(filename) returns a rigidBodyTree object by parsing the Unified Robot
Description Format (URDF) or Simulation Description Format (SDF) file specified by filename.

robot = importrobot(URDFtext) parses the URDF text. Specify URDFtext as a string scalar or
character vector.

robot = importrobot(SDFtext) parses the SDF text. Specify SDFtext as a string scalar or
character vector.

robot = importrobot( ___ ,format) explicitly specifies the type of the robot description in
addition to any combination of input arguments from previous syntaxes. If the format of the text file
does not match the format specified in the format argument, the function returns an error.

robot = importrobot( ___ ,Name,Value) specifies options using one or more name-value pair
arguments in addition to any combination of input arguments from previous syntaxes. Use the “URDF
or SDF Import” on page 2-0  name-value pairs to import a model from URDF, SDF file, or text.

Simscape Multibody Model Import

[robot,importInfo] = importrobot(model) imports a Simscape Multibody model and returns
an equivalent rigidBodyTree object and information about the import in importInfo. Only fixed,
prismatic, and revolute joints are supported in the output rigidBodyTree object.

[robot,importInfo] = importrobot( ___ ,Name,Value) specifies options using one or more
name-value pair arguments in addition to the Simscape Multibody model from the previous syntax.
Use the “Simscape Multibody Model Import” on page 2-0  name-value pairs to import a model that
uses other joint types, constraint blocks, or variable inertias.

Examples
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Import Robot from URDF File

Import a URDF file as a rigidBodyTree object.

robot = importrobot('iiwa14.urdf')

robot = 
  rigidBodyTree with properties:

     NumBodies: 10
        Bodies: {1x10 cell}
          Base: [1x1 rigidBody]
     BodyNames: {1x10 cell}
      BaseName: 'world'
       Gravity: [0 0 0]
    DataFormat: 'struct'

show(robot)

ans = 
  Axes (Primary) with properties:

             XLim: [-1.5000 1.5000]
             YLim: [-1.5000 1.5000]
           XScale: 'linear'
           YScale: 'linear'
    GridLineStyle: '-'
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         Position: [0.1300 0.1100 0.7750 0.8150]
            Units: 'normalized'

  Show all properties

Import Robot from URDF Character Vector

Specify the URDF character vector. This character vector is a minimalist description for creating a
valid robot model.

URDFtext = '<?xml version="1.0" ?><robot name="min"><link name="L0"/></robot>';

Import the robot model. The description creates a rigidBodyTree object that has only a robot base
link named 'L0'.

robot = importrobot(URDFtext)

robot = 
  rigidBodyTree with properties:

     NumBodies: 0
        Bodies: {1x0 cell}
          Base: [1x1 rigidBody]
     BodyNames: {1x0 cell}
      BaseName: 'L0'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Display Robot Model with Visual Geometries

You can import robots that have .stl files associated with the Unified Robot Description format
(URDF) file to describe the visual geometries of the robot. Each rigid body has an individual visual
geometry specified. The importrobot function parses the URDF file to get the robot model and
visual geometries. The function assumes that visual geometry and collision geometry of the robot are
the same and assigns the visual geometries as collision geometries of corresponsing bodies.

Use the show function to display the visual and collosion geometries of the robot model in a figure.
You can then interact with the model by clicking components to inspect them and right-clicking to
toggle visibility.

Import a robot model as a URDF file. The .stl file locations must be properly specified in this URDF.
To add other .stl files to individual rigid bodies, see addVisual.

robot = importrobot('iiwa14.urdf');

Visualize the robot with the associated visual model. Click bodies or frames to inspect them. Right-
click bodies to toggle visibility for each visual geometry.

show(robot,'visuals','on','collision','off');
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Visualize the robot with the associated collision geometries. Click bodies or frames to inspect them.
Right-click bodies to toggle visibility for each collision geometry.

show(robot,'visuals','off','collision','on'); 

2 Functions

2-108



Import Simscape™ Multibody™ model to RigidBodyTree Object

Import an existing Simscape™ Multibody™ robot model into the Robotics System Toolbox™ as a
rigidBodyTree object.

Open the Simscape™ Multibody™ model. This is a model for a humanoid robot.

open_system('example_smhumanoidrobot.slx')

Import the model.

[robot,importInfo] = importrobot(gcs)

robot = 
  rigidBodyTree with properties:

     NumBodies: 21
        Bodies: {1x21 cell}
          Base: [1x1 rigidBody]
     BodyNames: {1x21 cell}
      BaseName: 'Base'
       Gravity: [0 0 -9.8066]
    DataFormat: 'struct'
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importInfo = 
  rigidBodyTreeImportInfo with properties:

        SourceModelName: 'example_smhumanoidrobot'
          RigidBodyTree: [1x1 rigidBodyTree]
    BlockConversionInfo: [1x1 struct]

Display details about the created rigidBodyTree object.

showdetails(importInfo)

--------------------
Robot: (21 bodies)

 Idx     Body Name     Simulink Source Blocks     Joint Name     Simulink Source Blocks   Joint Type     Parent Name(Idx)   Children Name(s)
 ---     ---------     ----------------------     ----------     ----------------------   ----------     ----------------   ----------------
   1        Body01    Info | List | Highlight        Joint01    Info | List | Highlight     revolute              Base(0)   Body02(2)  
   2        Body02    Info | List | Highlight        Joint02    Info | List | Highlight     revolute            Body01(1)   Body03(3)  
   3        Body03    Info | List | Highlight        Joint03    Info | List | Highlight     revolute            Body02(2)   Body04(4)  
   4        Body04    Info | List | Highlight        Joint04    Info | List | Highlight     revolute            Body03(3)   
   5        Body05    Info | List | Highlight        Joint05    Info | List | Highlight     revolute              Base(0)   Body06(6)  
   6        Body06    Info | List | Highlight        Joint06    Info | List | Highlight     revolute            Body05(5)   Body07(7)  
   7        Body07    Info | List | Highlight        Joint07    Info | List | Highlight     revolute            Body06(6)   Body08(8)  
   8        Body08    Info | List | Highlight        Joint08    Info | List | Highlight     revolute            Body07(7)   
   9        Body09    Info | List | Highlight        Joint09    Info | List | Highlight     revolute              Base(0)   Body10(10)  
  10        Body10    Info | List | Highlight        Joint10    Info | List | Highlight     revolute            Body09(9)   Body11(11)  
  11        Body11    Info | List | Highlight        Joint11    Info | List | Highlight     revolute           Body10(10)   Body12(12)  
  12        Body12    Info | List | Highlight        Joint12    Info | List | Highlight     revolute           Body11(11)   
  13        Body13    Info | List | Highlight        Joint13    Info | List | Highlight     revolute              Base(0)   Body14(14)  
  14        Body14    Info | List | Highlight        Joint14    Info | List | Highlight     revolute           Body13(13)   Body15(15)  
  15        Body15    Info | List | Highlight        Joint15    Info | List | Highlight     revolute           Body14(14)   Body16(16)  
  16        Body16    Info | List | Highlight        Joint16    Info | List | Highlight     revolute           Body15(15)   
  17        Body17    Info | List | Highlight        Joint17    Info | List | Highlight     revolute              Base(0)   Body18(18)  
  18        Body18    Info | List | Highlight        Joint18    Info | List | Highlight     revolute           Body17(17)   Body19(19)  
  19        Body19    Info | List | Highlight        Joint19    Info | List | Highlight        fixed           Body18(18)   Body20(20)  
  20        Body20    Info | List | Highlight        Joint20    Info | List | Highlight        fixed           Body19(19)   
  21        Body21    Info | List | Highlight        Joint21    Info | List | Highlight        fixed              Base(0)   
--------------------

Input Arguments
filename — Name of URDF or SDF file
string scalar | character vector

Name of the URDF or SDF file, specified as a string scalar or character vector. This file must be a
valid URDF robot description or SDF model description.
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Included Robot Models with Mesh Data

Robot Model Mesh Visualization Description
"iiwa7.urdf" KUKA LBR iiwa 7 R800 7-axis

robot

"iiwa14.urdf" URDF version of KUKA LBR iiwa
14 R820 7-axis robot

"iiwa14.sdf" SDF version of KUKA LBR iiwa
14 R820 7-axis robot

"sawyer.urdf" Rethink Robotics Sawyer 7-axis
robot
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Note To download the mesh data for the included robot models without the mesh data, see “Install
Robotics System Toolbox Robot Library Data Support Package”.
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Included Robot Models without Mesh Data

Robot Model Mesh Visualization Description
"abbIrb120.urdf" ABB IRB 120 6-axis robot

"abbIrb120T.urdf" ABB IRB 120T 6-axis robot

"abbIrb1600.urdf" ABB IRB 1600 6-axis robot

"abbYuMi.urdf" ABB YuMi 2-armed robot

 importrobot
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Robot Model Mesh Visualization Description
"amrPioneer3AT.urdf" Adept MobileRobots Pioneer 3-

AT mobile robot

"amrPioneer3DX.urdf" Adept MobileRobots Pioneer 3-
DX mobile robot

"amrPioneerLX.urdf" Adept MobileRobots Pioneer LX
mobile robot

"atlas.urdf" Boston Dynamics ATLAS®
Humanoid robot
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Robot Model Mesh Visualization Description
"clearpathHusky.urdf" Clearpath Robotics Husky

mobile robot

"clearpathJackal.urdf" Clearpath Robotics Jackal
mobile robot

"clearpathTurtleBot2.urd
f"

Clearpath Robotics TurtleBot 2
mobile robot

"fanucLRMate200ib.urdf" FANUC LR Mate 200iB 6-axis
robot

 importrobot
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Robot Model Mesh Visualization Description
"fanucM16ib.urdf" FANUC M-16iB 6-axis robot

"frankaEmikaPanda.urdf" Franka Emika Panda 7-axis
robot

"kinovaGen3.urdf" Version 1 of KINOVA® Gen3 7-
axis robot

"kinovaGen3V12.urdf" Version 2 of KINOVA® Gen3 7-
axis robot
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Robot Model Mesh Visualization Description
"kinovaJacoJ2N6S200.urdf
"

KINOVA JACO® 2-fingered 6
DOF robot with non-spherical
wrist

"kinovaJacoJ2N6S300.urdf
"

KINOVA JACO® 3-fingered 6
DOF robot with non-spherical
wrist

"kinovaJacoJ2N7S300.urdf
"

KINOVA JACO® 3-fingered 7
DOF robot with non-spherical
wrist

"kinovaJacoJ2S6S300.urdf
"

KINOVA JACO® 3-fingered 6
DOF robot with spherical wrist

 importrobot
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Robot Model Mesh Visualization Description
"kinovaJacoJ2S7S300.urdf
"

KINOVA JACO® 3-fingered 7
DOF robot with spherical wrist

"kinovaJacoTwoArmExample
.urdf"

Two KINOVA JACO® 3-fingered
6 DOF robots with non-spherical
wrist

"kinovaMicoM1N4S200.urdf
"

KINOVA MICO® 2-fingered 4
DOF robot

"kinovaMicoM1N6S200.urdf
"

KINOVA MICO® 2-fingered 6
DOF robot
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Robot Model Mesh Visualization Description
"kinovaMicoM1N6S300.urdf
"

KINOVA MICO® 3-fingered 6
DOF robot

"kinovaMovo.urdf" KINOVA MOVO® 2-armed
mobile robot

"kukaIiwa7.urdf" KUKA LBR iiwa 7 R800 7-axis
robot

"kukaIiwa14.urdf" KUKA LBR iiwa 14 R820 7-axis
robot

 importrobot
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Robot Model Mesh Visualization Description
"meca500r3.urdf" Mecademic Meca500 R3 6-axis

robot

"quanserQArm.urdf" Quanser QArm 4 DOF robot

"quanserQBot2e.urdf" Quanser QBot 2e mobile robot

"quanserQCar.urdf" Quanser QCar mobile robot
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Robot Model Mesh Visualization Description
"rethinkBaxter.urdf" Rethink Robotics Baxter 2-

armed robot

"rethinkSawyer.urdf" Rethink Robotics Sawyer 7-axis
robot

"robotiq2F85.urdf" Robotiq 2F-85 2-finger gripper

The gripper can be used with
the following list of
manipulators:

• Universal Robots UR3
• Universal Robots UR3e
• Universal Robots UR5
• Universal Robots UR5e
• Universal Robots UR10
• Universal Robots UR10e
• Universal Robots UR16e
• KINOVA® Gen3 (versions 1

and 2)
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Robot Model Mesh Visualization Description
"robotisOP2.urdf" ROBOTIS OP2 Humanoid robot

"robotisOpenManipulator.
urdf"

ROBOTIS OpenMANIPULATOR
4-axis robot with gripper

"robotisTurtleBot3Burger
.urdf"

ROBOTIS TurtleBot 3 Burger
robot

"robotisTurtleBot3Waffle
.urdf"

ROBOTIS TurtleBot 3 Waffle
robot
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Robot Model Mesh Visualization Description
"robotisTurtleBot3Waffle
ForOpenManipulator.urdf"

ROBOTIS TurtleBot 3 Waffle
robot with OpenMANIPULATOR

"robotisTurtleBot3Waffle
Pi.urdf"

ROBOTIS TurtleBot 3 Waffle Pi
robot

"robotisTurtleBot3Waffle
PiForOpenManipulator.urd
f"

ROBOTIS TurtleBot 3 Waffle Pi
robot with OpenMANIPULATOR

"universalUR3.urdf" Universal Robots UR3 6-axis
robot

 importrobot
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Robot Model Mesh Visualization Description
"universalUR3e.urdf" Universal Robots UR3e 6-axis

robot

"universalUR5.urdf" Universal Robots UR5 6-axis
robot

"universalUR5e.urdf" Universal Robots UR5e 6-axis
robot

"universalUR10.urdf" Universal Robots UR10 6-axis
robot
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Robot Model Mesh Visualization Description
"universalUR10e.urdf" Universal Robots UR10e 6-axis

robot

"universalUR16e.urdf" Universal Robots UR16e 6-axis
robot

"valkyrie.urdf" NASA Valkyrie Humanoid robot

"willowgaragePR2.urdf" Willow Garage PR2 mobile robot

 importrobot
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Robot Model Mesh Visualization Description
"yaskawaMotomanMH5.urdf" Yaskawa Motoman MH5 6-axis

robot

Example: "robot_file.urdf"
Example: "robot_file.sdf"
Data Types: char | string

URDFtext — URDF robot text
string scalar | character vector

URDF robot text, specified as a string scalar or character vector.
Example: "<?xml version="1.0" ?><robot name="min"><link name="L0"/></robot>"
Example: "robot_file.txt","urdf"
Data Types: char | string

SDFtext — SDF model text
string scalar | character vector

SDF model text, specified as a string scalar or character vector.
Example: "<?xml version="1.0" ?><sdf version="1.6"><model name="min"><link
name="L0"/></model></sdf>"

Example: "robot_file.txt","sdf"
Data Types: char | string

format — File format of robot description text file
'urdf' | 'sdf'

File format of robot description text file, specified as a string scalar or character vector. Use this
argument to specify explicitly the required format for the robot description file.
Example: "robot_file.txt","urdf"
Example: "robot_file.txt","sdf"
Data Types: char | string

model — Simscape Multibody model
model handle | string scalar | character vector

Simscape Multibody model, specified as a model handle, string scalar, or character vector.
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Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MeshPath",{"../arm_meshes","../body_meshes"}

URDF or SDF Import

MeshPath — Relative search paths for mesh files
string scalar | character vector | cell array of string scalars or character vectors

Relative search paths for mesh files, specified as a string scalar, character vector, or cell array of
string scalars or character vectors. Mesh files must still be specified inside the URDF or SDF file, but
MeshPath defines the relative paths for these specified files.
Data Types: char | string | cell

DataFormat — Input/output data format for kinematics and dynamics functions
"struct" (default) | "row" | "column"

Input/output data format for the kinematics and dynamics functions of the robot model, specified as
the comma-separated pair consisting of 'DataFormat' and "struct", "row", or "column". To use
dynamics functions, you must specify either "row" or "column". This name-value pair sets the
DataFormat property of the rigidBodyTree robot model.
Data Types: char | string

SDFModel — Select model from SDF that contain multiple models
string scalar | character vector

Select a model from the SDF file or text that contain multiple models, specified as a string scalar or
character vector.

Note This name-value pair only applies to the SDF model and text.

Data Types: char | string

MaxNumBodies — Maximum number of bodies allowed in imported robot during code
generation
integer

Maximum number of bodies allowed in imported robot during code generation, specified as an
integer. Use MaxNumBodies to add rigid bodies to the imported tree inside a function that supports
code generation. The number of additional bodies that can be added is the difference between
MaxNumBodies and the number of bodies in the imported tree, rigidBodyTree.NumBodies.

Note This name-value pair is only necessary for code generation workflows.

 importrobot

2-127



Simscape Multibody Model Import

BreakChains — Indicates whether to break closed chains
"error" (default) | "remove-joints"

Indicates whether to break closed chains in the given model input, specified as "error" or
"remove-joints". If you specify "remove-joints", the resulting robot output has chain closure
joints removed. Otherwise, the function throws an error.
Data Types: char | string

ConvertJoints — Indicates whether to convert unsupported joints to fixed
"error" (default) | "convert-to-fixed"

Indicates whether to convert unsupported joints to fixed joints in the given model input, specified as
"error" or "convert-to-fixed". If you specify "convert-to-fixed", the resulting robot
output has any unsupported joints converted to fixed joints. Only fixed, prismatic, and revolute joints
are supported in the output rigidBodyTree object. Otherwise, if the model contains unsupported
joints, the function throws an error.
Data Types: char | string

SMContraints — Indicates whether to remove constraint blocks
"error" (default) | "remove"

Indicates whether to remove constraint blocks in the given model input, specified as "error" or
"remove". If you specify "remove", the resulting robot output has the constraints removed.
Otherwise, if the model contains constraint blocks, the function throws an error.
Data Types: char | string

VariableInertias — Indicates whether to remove variable inertia blocks
"error" (default) | "remove"

Indicates whether to remove variable inertia blocks in the given model input, specified as "error"
or "remove". If you specify "remove", the resulting robot output has the variable inertias removed.
Otherwise, if the model contains variable inertia blocks, the function throws an error.
Data Types: char | string

DataFormat — Input/output data format for kinematics and dynamics functions
"struct" (default) | "row" | "column"

Input/output data format for the kinematics and dynamics functions of the robot model, specified as
the comma-separated pair consisting of 'DataFormat' and "struct", "row", or "column". To use
dynamics functions, you must specify either "row" or "column". This name-value pair sets the
DataFormat property of the rigidBodyTree robot model.
Data Types: char | string

Output Arguments
robot — Robot model
rigidBodyTree object

Robot model, returned as a rigidBodyTree object.
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Note If the gravity is not specified in the URDF file, the default Gravity property is set to [0 0 0].
Simscape Multibody uses a default of [0 0 -9.80665]m/s2 when using smimport to import a
URDF.

importInfo — Object for storing import information
rigidBodyTreeImportInfo object

Object for storing import information, returned as a rigidBodyTreeImportInfo object. This object
contains the relationship between the input model and the resulting robot output.

Use showdetails to list all the import info for each body in the robot. Links to display the rigid
body info, their corresponding blocks in the model, and highlighting specific blocks in the model are
output to the command window.

Use bodyInfo, bodyInfoFromBlock, or bodyInfoFromJoint to get information about specific
components in either the robot output or the model input.

Tips
When importing a robot model with visual meshes, the importrobot function searches for the .stl
or .dae files to assign to each rigid body using these rules:

• The function searches the raw mesh path for a specified rigid body from the URDF or SDF file.
References to ROS packages have the package:\\<pkg_name> removed.

• Absolute paths are checked directly with no modification.
• Relative paths are checked using the following directories in order:

• User-specified MeshPath
• Current folder
• MATLAB path
• The folder containing the URDF or SDF file
• One level above the folder containing the URDF or SDF file

• The file name from the mesh path in the URDF or SDF file is appended to the MeshPath input
argument.

If the mesh file is still not found, the parser ignores the mesh file and returns a rigidBodyTree
object without visual.

Version History
Introduced in R2017a

See Also
rigidBodyTree | rigidBodyTreeImportInfo | loadrobot

Topics
“Rigid Body Tree Robot Model”
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loadrobot
Load rigid body tree robot model

Syntax
robotRBT = loadrobot(robotname)
[robotRBT,robotData] = loadrobot(robotname)
[robotRBT,robotData] = loadrobot(robotname,Name,Value)

Description
robotRBT = loadrobot(robotname) loads a robot model as a rigidBodyTree object specified
by robot model name robotname.

To import your own robot model as a Unified Robot Description Format (URDF) file or Simscape
Multibody model, see the importrobot function.

[robotRBT,robotData] = loadrobot(robotname) returns additional information about the
robot model as a structure, robotData.

[robotRBT,robotData] = loadrobot(robotname,Name,Value) specifies additional options
using one or more name-value pair arguments. For example, 'Gravity',[0 0 –9.81] sets the
gravity property to –9.81 m/s2 in the z-direction for the robot model.

Examples

Load Provided Robot Model

This example shows how to load an included robot model using loadrobot. Specify one of the select
robot names to get a rigidBodyTree robot model that contains kinematic and dynamic constraints
and visual meshes for the specified robot geometry.

gen3 = loadrobot("kinovaGen3");

Show the robot model in a figure.

show(gen3);
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Input Arguments
robotname — Name of robot model
"abbIrb120" | "abbIrb120T" | "abbIrb1600" | ...

Name of robot model, specified as one of these valid robot model names:

Robot Model Mesh Visualization Description
"abbIrb120" ABB IRB 120 6-axis robot

 loadrobot
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Robot Model Mesh Visualization Description
"abbIrb120T" ABB IRB 120T 6-axis robot

"abbIrb1600" ABB IRB 1600 6-axis robot

"abbYuMi" ABB YuMi 2-armed robot

"amrPioneer3AT" Adept MobileRobots Pioneer 3-
AT mobile robot
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Robot Model Mesh Visualization Description
"amrPioneer3DX" Adept MobileRobots Pioneer 3-

DX mobile robot

"amrPioneerLX" Adept MobileRobots Pioneer LX
mobile robot

"atlas" Boston Dynamics ATLAS®
Humanoid robot

"clearpathHusky" Clearpath Robotics Husky
mobile robot

 loadrobot
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Robot Model Mesh Visualization Description
"clearpathJackal" Clearpath Robotics Jackal

mobile robot

"clearpathTurtleBot2" Clearpath Robotics TurtleBot 2
mobile robot

"fanucLRMate200ib" FANUC LR Mate 200iB 6-axis
robot

"fanucM16ib" FANUC M-16iB 6-axis robot
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Robot Model Mesh Visualization Description
"frankaEmikaPanda" Franka Emika Panda 7-axis

robot

"kinovaGen3" Version 1:

Version 2:

KINOVA® Gen3 7-axis robot

 loadrobot
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Robot Model Mesh Visualization Description
"kinovaJacoJ2N6S200" KINOVA JACO® 2-fingered 6

DOF robot with non-spherical
wrist

"kinovaJacoJ2N6S300" KINOVA JACO® 3-fingered 6
DOF robot with non-spherical
wrist

"kinovaJacoJ2N7S300" KINOVA JACO® 3-fingered 7
DOF robot with non-spherical
wrist

"kinovaJacoJ2S6S300" KINOVA JACO® 3-fingered 6
DOF robot with spherical wrist
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Robot Model Mesh Visualization Description
"kinovaJacoJ2S7S300" KINOVA JACO® 3-fingered 7

DOF robot with spherical wrist

"kinovaJacoTwoArmExample
"

Two KINOVA JACO® 3-fingered
6 DOF robots with non-spherical
wrist

"kinovaMicoM1N4S200" KINOVA MICO® 2-fingered 4
DOF robot

"kinovaMicoM1N6S200" KINOVA MICO® 2-fingered 6
DOF robot

 loadrobot
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Robot Model Mesh Visualization Description
"kinovaMicoM1N6S300" KINOVA MICO® 3-fingered 6

DOF robot

"kinovaMovo" KINOVA MOVO® 2-armed
mobile robot

"kukaIiwa7" KUKA LBR iiwa 7 R800 7-axis
robot

"kukaIiwa14" KUKA LBR iiwa 14 R820 7-axis
robot
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Robot Model Mesh Visualization Description
"meca500r3" Mecademic Meca500 R3 6-axis

robot

"quanserQArm" Quanser QArm 4 DOF robot

"quanserQBot2e" Quanser QBot 2e mobile robot

"quanserQCar" Quanser QCar mobile robot

 loadrobot
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Robot Model Mesh Visualization Description
"rethinkBaxter" Rethink Robotics Baxter 2-

armed robot

"rethinkSawyer" Rethink Robotics Sawyer 7-axis
robot

"robotiq2F85" Robotiq 2F-85 2-finger gripper

The gripper can be used with
the following list of
manipulators:

• Universal Robots UR3
• Universal Robots UR3e
• Universal Robots UR5
• Universal Robots UR5e
• Universal Robots UR10
• Universal Robots UR10e
• Universal Robots UR16e
• KINOVA® Gen3 (versions 1

and 2)
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Robot Model Mesh Visualization Description
"robotisOP2" ROBOTIS OP2 Humanoid robot

"robotisOpenManipulator" ROBOTIS OpenMANIPULATOR
4-axis robot with gripper

"robotisTurtleBot3Burger
"

ROBOTIS TurtleBot 3 Burger
robot

"robotisTurtleBot3Waffle
"

ROBOTIS TurtleBot 3 Waffle
robot

 loadrobot
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Robot Model Mesh Visualization Description
"robotisTurtleBot3Waffle
ForOpenManipulator"

ROBOTIS TurtleBot 3 Waffle
robot for OpenMANIPULATOR

"robotisTurtleBot3Waffle
Pi"

ROBOTIS TurtleBot 3 Waffle Pi
robot

"robotisTurtleBot3Waffle
PiForOpenManipulator"

ROBOTIS TurtleBot 3 Waffle Pi
robot for OpenMANIPULATOR

"universalUR3" Universal Robots UR3 6-axis
robot
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Robot Model Mesh Visualization Description
"universalUR3e" Universal Robots UR3e 6-axis

robot

"universalUR5" Universal Robots UR5 6-axis
robot

"universalUR5e" Universal Robots UR5e 6-axis
robot

"universalUR10" Universal Robots UR10 6-axis
robot

 loadrobot
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Robot Model Mesh Visualization Description
"universalUR10e" Universal Robots UR10e 6-axis

robot

"universalUR16e" Universal Robots UR16e 6-axis
robot

"valkyrie" NASA Valkyrie Humanoid robot

"willowgaragePR2" Willow Garage PR2 mobile robot
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Robot Model Mesh Visualization Description
"yaskawaMotomanMH5" Yaskawa Motoman MH5 6-axis

robot

Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Gravity',[0 0 -9.81] sets the gravity property to -9.81 m/s2 in the z-direction for the
robot model.

DataFormat — Input/output data format for kinematics and dynamics functions
"struct" (default) | "row" | "column"

Input/output data format for the kinematics and dynamics functions of the robot model, specified as
the comma-separated pair consisting of 'DataFormat' and "struct", "row", or "column". To use
dynamics functions, you must specify either "row" or "column". This name-value pair sets the
DataFormat property of the rigidBodyTree robot model.

Gravity — Gravitational acceleration experienced by robot
[0 0 0] m/s2 (default) | three-element vector of the form [x y z]

Gravitational acceleration experienced by robot, specified as the comma-separated pair consisting of
'Gravity' and a three-element vector of the form [x y z] in m/s2. Each element corresponds to
the acceleration of the base robot frame in the x-, y-, and z-direction, respectively. This name-value
pair sets the Gravity property of the rigidBodyTree robot model.

Version — URDF version of robot model
1 (default) | numeric scalar

URDF version of the robot model, specified as a numeric scalar.

Robot Model Versions
"kinovaGen3" 1 –– Loads the kinovaGen3.urdf robot model

2 –– Loads the kinovaGen3V12.urdf robot
model

Example: loadrobot("kinovaGen3","Version",2)

 loadrobot
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Output Arguments
robotRBT — Rigid body tree robot model
rigidBodyTree object

Rigid body tree robot model, returned as a rigidBodyTree object. This model contains all the
kinematic and dynamic constraints based on the robot source files specified in robotData. Some
models also contain visual meshes for visualizing robot trajectories.

robotData — Robot model information
structure

Robot model information, returned as a structure containing these fields. Whether the function
returns a value for a field is based on the type of robot specified by the robotname input. Non-
relevant fields for that robot are empty.

This table describes the fields of the robot model information structure.

Field Description
RobotName

(relevant for all robot types)

Name of the returned robot model

FilePath

(relevant for all robot types)

File path of the URDF file that is used to create
the rigid body tree model

Source

(relevant for all robot types)

URL source of the robot model

Version

(relevant for all robot types)

Version number of the robot model

WheelRadius Wheel radius of the robot in meters
WheelBase Distance between front and rear axles in meters
TrackWidth Distance between wheels on axle in meters
MaxTranslationalVelocity Maximum linear velocity of the robot in m/s
MaxRotationalVelocity Maximum angular velocity of the robot in rad/s
DriveType All robots are modeled with a fixed base, but this

field describes the actual drive type of the robot
base. The drive type can be any one of the
following based on the specified robot:

• FixedBase –– Drive type of robots with a
fixed base

• Differential-Drive –– Drive type of robots
with a differential-drive mobile base

• Omni-Wheel –– Drive type of robots with an
omni-wheel mobile base

2 Functions

2-146



Field Description
ManipulatorMotionModel Motion model of a manipulator robot

• jointSpaceMotionModel object –– Joint-
space motion model of the manipulator robot

MobileBaseMotionModel Kinematic motion model of the mobile base. The
motion model can be any one of the following
based on the specified robot:

• differentialDriveKinematics object ––
Differential-drive kinematic motion model for
robots with a differential-drive mobile base

• unicycleKinematics object –– Unicycle
kinematic motion model for robots with an
omni-wheel mobile base

HasBodyInertias Flag indicating if the robot model has inertias,
indicated as a 1 (true) if the robot model has at
least one body with body inertia or 0 (false) if the
robot model has no bodies with inertia.

Data Types: struct

Version History
Introduced in R2019b

See Also
rigidBodyTree | importrobot | inverseKinematics

 loadrobot
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ldivide, .\
Element-wise quaternion left division

Syntax
C = A.\B

Description
C = A.\B performs quaternion element-wise division by dividing each element of quaternion B by
the corresponding element of quaternion A.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A.\B

C = 2x1 quaternion array
     0.066667 -  0.13333i -      0.2j -  0.26667k
     0.057471 - 0.068966i -  0.08046j - 0.091954k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion([1:4;2:5;4:7;5:8]);
A = reshape(q1,2,2)

A = 2x2 quaternion array
     1 + 2i + 3j + 4k     4 + 5i + 6j + 7k
     2 + 3i + 4j + 5k     5 + 6i + 7j + 8k

q2 = quaternion(magic(4));
B = reshape(q2,2,2)
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B = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

C = A.\B

C = 2x2 quaternion array
          2.7 -      1.9i -      0.9j -      1.7k       1.5159 -  0.37302i -  0.15079j -  0.02381k
       2.2778 +  0.46296i -  0.57407j + 0.092593k       1.2471 +  0.91379i -  0.33908j -   0.1092k

Input Arguments
A — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = p . \A =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes, then

C = A . \B = A−1 . * B = con j(A)
norm(A)2

. * B

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
.*,times | conj | norm | ./,ldivide

Objects
quaternion
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log
Natural logarithm of quaternion array

Syntax
B = log(A)

Description
B = log(A) computes the natural logarithm of the elements of the quaternion array A.

Examples

Logarithmic Values of Quaternion Array

Create a 3-by-1 quaternion array A.

A = quaternion(randn(3,4))

A = 3x1 quaternion array
     0.53767 + 0.86217i - 0.43359j +  2.7694k
      1.8339 + 0.31877i + 0.34262j -  1.3499k
     -2.2588 -  1.3077i +  3.5784j +  3.0349k

Compute the logarithmic values of A.

B = log(A)

B = 3x1 quaternion array
      1.0925 + 0.40848i - 0.20543j +  1.3121k
      0.8436 + 0.14767i + 0.15872j - 0.62533k
      1.6807 - 0.53829i +   1.473j +  1.2493k

Input Arguments
A — Input array
scalar | vector | matrix | multidimensional array

Input array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
B — Logarithm values
scalar | vector | matrix | multidimensional array
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Quaternion natural logarithm values, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Given a quaternion A = a + v = a + bi + c j + dk, the logarithm is computed by

log(A) = log A + v
v arccos a

A

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
exp | .^,power

Objects
quaternion
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meanrot
Quaternion mean rotation

Syntax
quatAverage = meanrot(quat)
quatAverage = meanrot(quat,dim)
quatAverage = meanrot( ___ ,nanflag)

Description
quatAverage = meanrot(quat) returns the average rotation of the elements of quat along the
first array dimension whose size not does equal 1.

• If quat is a vector, meanrot(quat) returns the average rotation of the elements.
• If quat is a matrix, meanrot(quat) returns a row vector containing the average rotation of each

column.
• If quat is a multidimensional array, then mearot(quat) operates along the first array dimension

whose size does not equal 1, treating the elements as vectors. This dimension becomes 1 while the
sizes of all other dimensions remain the same.

The meanrot function normalizes the input quaternions, quat, before calculating the mean.

quatAverage = meanrot(quat,dim) return the average rotation along dimension dim. For
example, if quat is a matrix, then meanrot(quat,2) is a column vector containing the mean of each
row.

quatAverage = meanrot( ___ ,nanflag) specifies whether to include or omit NaN values from
the calculation for any of the previous syntaxes. meanrot(quat,'includenan') includes all NaN
values in the calculation while mean(quat,'omitnan') ignores them.

Examples

Quaternion Mean Rotation

Create a matrix of quaternions corresponding to three sets of Euler angles.

eulerAngles = [40 20 10; ...
               50 10 5; ...
               45 70 1];

quat = quaternion(eulerAngles,'eulerd','ZYX','frame');

Determine the average rotation represented by the quaternions. Convert the average rotation to
Euler angles in degrees for readability.

quatAverage = meanrot(quat)
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quatAverage = quaternion
      0.88863 - 0.062598i +  0.27822j +  0.35918k

eulerAverage = eulerd(quatAverage,'ZYX','frame')

eulerAverage = 1×3

   45.7876   32.6452    6.0407

Average Out Rotational Noise

Use meanrot over a sequence of quaternions to average out additive noise.

Create a vector of 1e6 quaternions whose distance, as defined by the dist function, from
quaternion(1,0,0,0) is normally distributed. Plot the Euler angles corresponding to the noisy
quaternion vector.

nrows = 1e6;
ax = 2*rand(nrows,3) - 1;   
ax = ax./sqrt(sum(ax.^2,2));
ang = 0.5*randn(size(ax,1),1);
q = quaternion(ax.*ang ,'rotvec');

noisyEulerAngles = eulerd(q,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(noisyEulerAngles(:,1))
title('Z-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,2)
plot(noisyEulerAngles(:,2))
title('Y-Axis')
ylabel('Rotation (degrees)')
hold on

subplot(3,1,3)
plot(noisyEulerAngles(:,3))
title('X-Axis')
ylabel('Rotation (degrees)')
hold on
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Use meanrot to determine the average quaternion given the vector of quaternions. Convert to Euler
angles and plot the results.

qAverage = meanrot(q);

qAverageInEulerAngles = eulerd(qAverage,'ZYX','frame');

figure(1)

subplot(3,1,1)
plot(ones(nrows,1)*qAverageInEulerAngles(:,1))
title('Z-Axis')

subplot(3,1,2)
plot(ones(nrows,1)*qAverageInEulerAngles(:,2))
title('Y-Axis')

subplot(3,1,3)
plot(ones(nrows,1)*qAverageInEulerAngles(:,3))
title('X-Axis')
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The meanrot Algorithm and Limitations

The meanrot Algorithm

The meanrot function outputs a quaternion that minimizes the squared Frobenius norm of the
difference between rotation matrices. Consider two quaternions:

• q0 represents no rotation.
• q90 represents a 90 degree rotation about the x-axis.

q0 = quaternion([0 0 0],'eulerd','ZYX','frame');
q90 = quaternion([0 0 90],'eulerd','ZYX','frame');

Create a quaternion sweep, qSweep, that represents rotations from 0 to 180 degrees about the x-axis.

eulerSweep = (0:1:180)';
qSweep = quaternion([zeros(numel(eulerSweep),2),eulerSweep], ...
    'eulerd','ZYX','frame');

Convert q0, q90, and qSweep to rotation matrices. In a loop, calculate the metric to minimize for
each member of the quaternion sweep. Plot the results and return the value of the Euler sweep that
corresponds to the minimum of the metric.

r0     = rotmat(q0,'frame');
r90    = rotmat(q90,'frame');
rSweep = rotmat(qSweep,'frame');

metricToMinimize = zeros(size(rSweep,3),1);
for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r90),'fro').^2;
end
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plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 45

The minimum of the metric corresponds to the Euler angle sweep at 45 degrees. That is, meanrot
defines the average between quaterion([0 0 0],'ZYX','frame') and quaternion([0 0
90],'ZYX','frame') as quaternion([0 0 45],'ZYX','frame'). Call meanrot with q0 and
q90 to verify the same result.

eulerd(meanrot([q0,q90]),'ZYX','frame')

ans = 1×3

         0         0   45.0000

Limitations

The metric that meanrot uses to determine the mean rotation is not unique for quaternions
significantly far apart. Repeat the experiment above for quaternions that are separated by 180
degrees.
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q180 = quaternion([0 0 180],'eulerd','ZYX','frame');
r180 = rotmat(q180,'frame');

for i = 1:numel(qSweep)
    metricToMinimize(i) = norm((rSweep(:,:,i) - r0),'fro').^2 + ...
                          norm((rSweep(:,:,i) - r180),'fro').^2;
end

plot(eulerSweep,metricToMinimize)
xlabel('Euler Sweep (degrees)')
ylabel('Metric to Minimize')

[~,eulerIndex] = min(metricToMinimize);
eulerSweep(eulerIndex)

ans = 159

Quaternion means are usually calculated for rotations that are close to each other, which makes the
edge case shown in this example unlikely in real-world applications. To average two quaternions that
are significantly far apart, use the slerp function. Repeat the experiment using slerp and verify
that the quaternion mean returned is more intuitive for large distances.

qMean = slerp(q0,q180,0.5);
q0_q180 = eulerd(qMean,'ZYX','frame')

q0_q180 = 1×3
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         0         0   90.0000

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the mean, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

dim — Dimension to operate along
positive integer scalar

Dimension to operate along, specified as a positive integer scalar. If no value is specified, then the
default is the first array dimension whose size does not equal 1.

Dimension dim indicates the dimension whose length reduces to 1. The size(quatAverage,dim) is
1, while the sizes of all other dimensions remain the same.
Data Types: double | single

nanflag — NaN condition
'includenan' (default) | 'omitnan'

NaN condition, specified as one of these values:

• 'includenan' –– Include NaN values when computing the mean rotation, resulting in NaN.
• 'omitnan' –– Ignore all NaN values in the input.

Data Types: char | string

Output Arguments
quatAverage — Quaternion average rotation
scalar | vector | matrix | multidimensional array

Quaternion average rotation, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Algorithms
meanrot determines a quaternion mean, q, according to [1]. q is the quaternion that minimizes the
squared Frobenius norm of the difference between rotation matrices:

q = arg
min

q ∈ S3 ∑i = 1

n
A q − A qi F

2

Version History
Introduced in R2018b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | slerp
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minjerkpolytraj
Generate minimum jerk trajectory through waypoints

Syntax
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(waypoints,timePoints,
numSamples)
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj( ___ ,Name=Value)
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj( ___
,TimeAllocation=true)

Description
[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj(waypoints,timePoints,
numSamples) generates a minimum jerk polynomial trajectory that achieves a given set of input
waypoints with their corresponding time points. The function returns positions, velocities,
accelerations, and jerks at the given number of samples numSamples. The function also returns the
piecewise polynomial pp form of the polynomial trajectory with respect to time, as well as the time
points tPoints and the sample times tSamples.

[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj( ___ ,Name=Value) specifies
options using one or more name-value pair arguments in addition to the input arguments from the
previous syntax. For example,
minjerkpolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum jerk trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

[q,qd,qdd,qddd,pp,tPoints,tSamples] = minjerkpolytraj( ___
,TimeAllocation=true) optimizes a combination of jerk and total segment time cost. In this case,
the function treats timePoints as an initial guess for the time of arrival at the waypoints.

Examples

Compute Minimum Jerk Trajectory for 2-D Planar Motion

Use the minjerkpolytraj function with a given set of 2-D xy waypoints. Time points for the
waypoints are also given.

wpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = 0:5;

Specify the number of samples in the output trajectory.

numsamples = 100;

Compute minimum jerk trajectories. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), and jerks (qddd) at the given number of samples.

[q,qd,qdd,qddd,pp,timepoints,tsamples] = minjerkpolytraj(wpts,tpts,numsamples);
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Plot the trajectories for the x- and y-positions. Compare the trajectory with each waypoint.

plot(tsamples,q)
hold on
plot(timepoints,wpts,'x')
xlabel('t')
ylabel('Positions')
legend('X-positions','Y-positions')
hold off

You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y- positions.

figure
plot(q(1,:),q(2,:),'.b',wpts(1,:),wpts(2,:),'or')
xlabel('X')
ylabel('Y')
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Input Arguments
waypoints — Waypoints for trajectory
n-by-p matrix

Waypoints for the trajectory, specified as an n-by-p matrix. n is the dimension of the trajectory, and p
is the number of waypoints.
Example: [2 5 8 4; 3 4 10 12]
Data Types: single | double

timePoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Example: [1 2 3 5]
Data Types: single | double

numSamples — Number of samples in output trajectory
positive integer

Number of samples in the output trajectory, specified as a positive integer.
Example: 50
Data Types: single | double
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
minjerkpolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum jerk trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

VelocityBoundaryCondition — Velocity boundary conditions for each waypoint
n-by-p matrix

Velocity boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
velocity boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: VelocityBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

AccelerationBoundaryCondition — Acceleration boundary conditions for each waypoint
n-by-p matrix

Acceleration boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: AccelerationBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

JerkBoundaryCondition — Jerk boundary conditions for each waypoint
n-by-p matrix

Jerk boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory at each of p waypoints. By default, the
function uses a value of 0 at the boundary waypoints and NaN at the intermediate waypoints.
Example: JerkBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

TimeAllocation — Time allocation flag
false or 0 (default) | true or 1

Time allocation flag, specified as a logical 0 (false) or 1 (true). Enable this flag to optimize a
combination of jerk and total segment time cost.

Note If singularity occurs when the time allocation flag is enabled, reduce the MaxSegmentTime to
MinSegmentTime ratio.

Example: TimeAllocation=true
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Data Types: logical

TimeWeight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.
Example: TimeWeight=120
Data Types: single | double

MinSegmentTime — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element row vector.
Example: MinSegmentTime=0.2
Data Types: single | double

MaxSegmentTime — Maximum time segment length
5 (default) | positive scalar | (p–1)-element row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element row vector
Example: MaxSegmentTime=10
Data Types: single | double

Output Arguments
q — Positions of trajectory
n-by-m matrix

Positions of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

qd — Velocities of trajectory
n-by-m matrix

Velocities of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

qdd — Accelerations of trajectory
n-by-m matrix

Accelerations of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix.
n is the dimension of the trajectory, and m is equal to numSamples.

qddd — Jerks of trajectory
n-by-m matrix

Jerks of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is the
dimension of the trajectory, and m is equal to numSamples.

pp — Piecewise polynomial
structure
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Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. The order of polynomial is 8.
• dim: n. The dimension of the control point positions.

tPoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, returned as a p-element row vector. p is the number of
waypoints.

tSamples — Time samples for trajectory
m-element row vector

Time samples for the trajectory, returned as an m-element row vector. Each element of the output
position q, velocity qd, acceleration qdd, and jerk qddd has been sampled at the corresponding time
in this vector.

Version History
Introduced in R2021b

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
bsplinepolytraj | cubicpolytraj | quinticpolytraj | trapveltraj | minsnappolytraj |
kinematicConstrainedTraj
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minsnappolytraj
Generate minimum snap trajectory through waypoints

Syntax
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(waypoints,
timePoints,numSamples)
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj( ___ ,Name=Value)
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj( ___
,TimeAllocation=true)

Description
[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj(waypoints,
timePoints,numSamples) generates a minimum snap polynomial trajectory that achieves a given
set of input waypoints with their corresponding time points. The function returns positions, velocities,
accelerations, jerks, and snaps at the given number of samples numSamples. The function also
returns the piecewise polynomial pp form of the polynomial trajectory with respect to time, as well as
the time points tPoints, and the sample times tSamples.

[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj( ___ ,Name=Value)
specifies options using one or more name-value pair arguments in addition to the input arguments
from the previous syntax. For example,
minsnappolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum snap trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

[q,qd,qdd,qddd,qdddd,pp,tPoints,tSamples] = minsnappolytraj( ___
,TimeAllocation=true) optimizes a combination of snap and the total segment time cost. In this
case, the function treats timePoints as an initial guess for the time of arrival at the waypoints.

Examples

Compute Minimum Snap Trajectory for 2-D Planar Motion

Use the minsnappolytraj function with a given set of 2-D xy waypoints. Time points for the
waypoints are also given.

wpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = 0:5;

Specify the number of samples in the output trajectory.

numsamples = 100;

Compute minimum snap trajectories. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), jerks (qddd), and snaps (qdddd) at the given number of samples.

[q,qd,qdd,qddd,qdddd,pp,timepoints,tsamples] = minsnappolytraj(wpts,tpts,numsamples);
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Plot the trajectories for the x- and y-positions. Compare the trajectory with each waypoint.

plot(tsamples,q)
hold on
plot(timepoints,wpts,'x')
xlabel('t')
ylabel('Positions')
legend('X-positions','Y-positions')
hold off

You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y- positions.

figure
plot(q(1,:),q(2,:),'.b',wpts(1,:),wpts(2,:),'or')
xlabel('X')
ylabel('Y')
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Input Arguments
waypoints — Waypoints for trajectory
n-by-p matrix

Waypoints for the trajectory, specified as an n-by-p matrix. n is the dimension of the trajectory, and p
is the number of waypoints.
Example: [2 5 8 4; 3 4 10 12]
Data Types: single | double

timePoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Example: [1 2 3 5]
Data Types: single | double

numSamples — Number of samples in output trajectory
positive integer

Number of samples in the output trajectory, specified as a positive integer.
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Example: 50
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.
Example:
minsnappolytraj(waypoints,timePoints,numSamples,VelocityBoundaryCondition=[1
0 -1 -1; 1 1 1 -1]) generates a two-dimensional minimum snap trajectory and specifies the
velocity boundary conditions in each dimension for each waypoint.

VelocityBoundaryCondition — Velocity boundary conditions for each waypoint
n-by-p matrix

Velocity boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
velocity boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: VelocityBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

AccelerationBoundaryCondition — Acceleration boundary conditions for each waypoint
n-by-p matrix

Acceleration boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory at each of p waypoints. By
default, the function uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Example: AccelerationBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

JerkBoundaryCondition — Jerk boundary conditions for each waypoint
n-by-p matrix

Jerk boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory at each of p waypoints. By default, the
function uses a value of 0 at the boundary waypoints and NaN at the intermediate waypoints.
Example: JerkBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
Data Types: single | double

SnapBoundaryCondition — Snap boundary conditions for each waypoint
n-by-p matrix

Snap boundary conditions for each waypoint, specified as an n-by-p matrix. Each row sets the snap
boundary for the corresponding dimension of the trajectory at each of p waypoints. By default, the
function uses a value of 0 at the boundary waypoints and NaN at the intermediate waypoints.
Example: SnapBoundaryCondition=[1 0 -1 -1; 1 1 1 -1]
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Data Types: single | double

TimeAllocation — Time allocation flag
false or 0 (default) | true or 1

Time allocation flag, specified as a logical 0 (false) or 1 (true). Enable this flag to optimize a
combination of snap and total segment time cost.

Note If singularity occurs when the time allocation flag is enabled, reduce the MaxSegmentTime to
MinSegmentTime ratio.

Example: TimeAllocation=true
Data Types: logical

TimeWeight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.
Example: TimeWeight=120
Data Types: single | double

MinSegmentTime — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element row vector.
Example: MinSegmentTime=0.2
Data Types: single | double

MaxSegmentTime — Maximum time segment length
1 (default) | positive scalar | (p–1)-element row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element row vector
Example: MaxSegmentTime=5
Data Types: single | double

Output Arguments
q — Positions of trajectory
n-by-m matrix

Positions of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.

qd — Velocities of trajectory
n-by-m matrix

Velocities of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is
the dimension of the trajectory, and m is equal to numSamples.
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qdd — Accelerations of trajectory
n-by-m matrix

Accelerations of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix.
n is the dimension of the trajectory, and m is equal to numSamples.

qddd — Jerks of trajectory
n-by-m matrix

Jerks of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is the
dimension of the trajectory, and m is equal to numSamples.

qdddd — Snaps of trajectory
n-by-m matrix

Snaps of the trajectory at the given time samples in tSamples, returned as an n-by-m matrix. n is the
dimension of the trajectory, and m is equal to numSamples.

pp — Piecewise polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. The order of polynomial is 10.
• dim: n. The dimension of the control point positions.

tPoints — Time points for waypoints of trajectory
p-element row vector

Time points for the waypoints of the trajectory, returned as a p-element row vector. p is the number of
waypoints.

tSamples — Time samples for trajectory
m-element row vector

Time samples for the trajectory, returned as an m-element row vector. Each element of the output
position q, velocity qd, acceleration qdd, jerk qddd, and snap qdddd has been sampled at the
corresponding time in this vector.

Version History
Introduced in R2021b
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minus, -
Quaternion subtraction

Syntax
C = A - B

Description
C = A - B subtracts quaternion B from quaternion A using quaternion subtraction. Either A or B
may be a real number, in which case subtraction is performed with the real part of the quaternion
argument.

Examples

Subtract a Quaternion from a Quaternion

Quaternion subtraction is defined as the subtraction of the corresponding parts of each quaternion.
Create two quaternions and perform subtraction.

Q1 = quaternion([1,0,-2,7]);
Q2 = quaternion([1,2,3,4]);

Q1minusQ2 = Q1 - Q2

Q1minusQ2 = quaternion
     0 - 2i - 5j + 3k

Subtract a Real Number from a Quaternion

Addition and subtraction of real numbers is defined for quaternions as acting on the real part of the
quaternion. Create a quaternion and then subtract 1 from the real part.

Q = quaternion([1,1,1,1])

Q = quaternion
     1 + 1i + 1j + 1k

Qminus1 = Q - 1

Qminus1 = quaternion
     0 + 1i + 1j + 1k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input, specified as a quaternion, array of quaternions, real number, or array of real numbers.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion subtraction, returned as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Functions
-,uminus | .*,times | *,mtimes

Objects
quaternion

2 Functions

2-176



mtimes, *
Quaternion multiplication

Syntax
quatC = A*B

Description
quatC = A*B implements quaternion multiplication if either A or B is a quaternion. Either A or B
must be a scalar.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the order of the desired
sequence of rotations. For example, to apply a p quaternion followed by a q quaternion, multiply in
the order pq. The rotation operator becomes pq ∗v pq , where v represents the object to rotate
specified in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Quaternion Scalar and Quaternion Vector

Create a 4-by-1 column vector, A, and a scalar, b. Multiply A times b.

A = quaternion(randn(4,4))

A = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

b = quaternion(randn(1,4))

b = quaternion
    -0.12414 +  1.4897i +   1.409j +  1.4172k

C = A*b

C = 4x1 quaternion array
      -6.6117 +   4.8105i +  0.94224j -   4.2097k
      -2.0925 +   6.9079i +   3.9995j -   3.3614k
       1.8155 -   6.2313i -    1.336j -     1.89k
      -4.6033 +   5.8317i + 0.047161j -    2.791k
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Input Arguments
A — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If B is nonscalar, then A must be scalar.
Data Types: quaternion | single | double

B — Input
scalar | vector | matrix | multidimensional array

Input to multiply, specified as a quaternion, array of quaternions, real scalar, or array of real scalars.

If A is nonscalar, then B must be scalar.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a quaternion or array of quaternions.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
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j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:

z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table:

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

Version History
Introduced in R2018a

References
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norm
Quaternion norm

Syntax
N = norm(quat)

Description
N = norm(quat) returns the norm of the quaternion, quat.

Given a quaternion of the form Q = a + bi + c j + dk, the norm of the quaternion is defined as
norm(Q) = a2 + b2 + c2 + d2.

Examples

Calculate Quaternion Norm

Create a scalar quaternion and calculate its norm.

quat = quaternion(1,2,3,4);
norm(quat)

ans = 5.4772

The quaternion norm is defined as the square root of the sum of the quaternion parts squared.
Calculate the quaternion norm explicitly to verify the result of the norm function.

[a,b,c,d] = parts(quat);
sqrt(a^2+b^2+c^2+d^2)

ans = 5.4772

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion for which to calculate the norm, specified as a scalar, vector, matrix, or multidimensional
array of quaternions.
Data Types: quaternion

Output Arguments
N — Quaternion norm
scalar | vector | matrix | multidimensional array
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Quaternion norm. If the input quat is an array, the output is returned as an array the same size as
quat. Elements of the array are real numbers with the same data type as the underlying data type of
the quaternion, quat.
Data Types: single | double

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
normalize | parts | conj

Objects
quaternion
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normalize
Quaternion normalization

Syntax
quatNormalized = normalize(quat)

Description
quatNormalized = normalize(quat) normalizes the quaternion.

Given a quaternion of the form Q = a + bi + c j + dk, the normalized quaternion is defined as
Q/ a2 + b2 + c2 + d2.

Examples

Normalize Elements of Quaternion Vector

Quaternions can represent rotations when normalized. You can use normalize to normalize a scalar,
elements of a matrix, or elements of a multi-dimensional array of quaternions. Create a column vector
of quaternions, then normalize them.

quatArray = quaternion([1,2,3,4; ...
                        2,3,4,1; ...
                        3,4,1,2]);
quatArrayNormalized = normalize(quatArray)

quatArrayNormalized = 3x1 quaternion array
     0.18257 + 0.36515i + 0.54772j +  0.7303k
     0.36515 + 0.54772i +  0.7303j + 0.18257k
     0.54772 +  0.7303i + 0.18257j + 0.36515k

Input Arguments
quat — Quaternion to normalize
scalar | vector | matrix | multidimensional array

Quaternion to normalize, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
quatNormalized — Normalized quaternion
scalar | vector | matrix | multidimensional array
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Normalized quaternion, returned as a quaternion or array of quaternions the same size as quat.
Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
norm | .*,times | conj

Objects
quaternion
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ones
Create quaternion array with real parts set to one and imaginary parts set to zero

Syntax
quatOnes = ones('quaternion')
quatOnes = ones(n,'quaternion')
quatOnes = ones(sz,'quaternion')
quatOnes = ones(sz1,...,szN,'quaternion')

quatOnes = ones( ___ ,'like',prototype,'quaternion')

Description
quatOnes = ones('quaternion') returns a scalar quaternion with the real part set to 1 and the
imaginary parts set to 0.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.

quatOnes = ones(n,'quaternion') returns an n-by-n quaternion matrix with the real parts set
to 1 and the imaginary parts set to 0.

quatOnes = ones(sz,'quaternion') returns an array of quaternion ones where the size vector,
sz, defines size(qOnes).
Example: ones([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternions with the real
parts set to 1 and the imaginary parts set to 0.

quatOnes = ones(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of ones where
sz1,…,szN indicates the size of each dimension.

quatOnes = ones( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar One

Create a quaternion scalar one.

quatOnes = ones('quaternion')

quatOnes = quaternion
     1 + 0i + 0j + 0k
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Square Matrix of Quaternion Ones

Create an n-by-n matrix of quaternion ones.

n = 3;
quatOnes = ones(n,'quaternion')

quatOnes = 3x3 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Multidimensional Array of Quaternion Ones

Create a multidimensional array of quaternion ones by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers. Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatOnesSyntax1 = ones(dims,'quaternion')

quatOnesSyntax1 = 3x1x2 quaternion array
quatOnesSyntax1(:,:,1) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

quatOnesSyntax1(:,:,2) = 

     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalency of the two
syntaxes:

quatOnesSyntax2 = ones(3,1,2,'quaternion');
isequal(quatOnesSyntax1,quatOnesSyntax2)

ans = logical
   1

Underlying Class of Quaternion Ones

A quaternion is a four-part hyper-complex number used in three-dimensional rotations and
orientations. You can specify the underlying data type of the parts as single or double. The default
is double.

 ones
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Create a quaternion array of ones with the underlying data type set to single.

quatOnes = ones(2,'like',single(1),'quaternion')

quatOnes = 2x2 quaternion array
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k
     1 + 0i + 0j + 0k     1 + 0i + 0j + 0k

Verify the underlying class using the classUnderlying function.

classUnderlying(quatOnes)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value.

If n is zero or negative, then quatOnes is returned as an empty matrix.
Example: ones(4,'quaternion') returns a 4-by-4 matrix of quaternions with the real parts set to
1 and the imaginary parts set to 0.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatOnes. If the size of any dimension is 0 or negative, then quatOnes
is returned as an empty array.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: ones(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers. If the size of any dimension is 0 or
negative, then quatOnes is returned as an empty array.
Example: ones(2,3,'quaternion') returns a 2-by-3 matrix of quaternions with the real parts set
to 1 and the imaginary parts set to 0.
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Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatOnes — Quaternion ones
scalar | vector | matrix | multidimensional array

Quaternion ones, returned as a scalar, vector, matrix, or multidimensional array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion one is defined as
Q = 1 + 0i + 0j + 0k.
Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
zeros

Objects
quaternion
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packageGazeboPlugin
Create Gazebo plugin package for Simulink

Syntax
packageGazeboPlugin
packageGazeboPlugin(packagePath)
packageGazeboPlugin(packagePath,customMessagePath)
outputPath = packageGazeboPlugin( ___ )

Description
packageGazeboPlugin creates a Gazebo plugin package as a zip archive. The function creates a
folder containing plugin source code, named GazeboPlugin, in the current working directory and
compresses it as GazeboPlugin.zip. Gazebo uses this plugin package to communicate with
Simulink for synchronized stepping, as well as sending and receiving messages.

packageGazeboPlugin(packagePath) creates a Gazebo plugin at the specified location
packagePath. packagePath must be a valid file name or a file path with the desired package folder
name. The function creates the plugin folder with the specified name in the location specified in the
packagePath argument and compresses it.

packageGazeboPlugin(packagePath,customMessagePath) creates a Gazebo plugin with
custom message support using the specified custom message dependencies in customMessagePath.
The dependencies must be specified as a valid path to a folder that contains the custom message
dependencies.

outputPath = packageGazeboPlugin( ___ ) returns the path of the plugin folder in addition to
any combination of input arguments from a previous syntax.

Examples

Generate Dependencies for User-Defined Gazebo Custom Message

Create a folder in a local directory.

folderPath = fullfile(pwd,'customMessage')

folderPath = 
'C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage'

mkdir(folderPath)

Create a .proto file inside the folder and define protobuf custom message fields.

messageDefinition = {'message MyPose'
                     '{'
                     '   required double x = 1;'
                     '   required double y = 2;'
                     '   required double z = 3;'
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                     '}'};
fileID = fopen(fullfile(folderPath,'MyPose.proto'),'w');
fprintf(fileID,'%s\n',messageDefinition{:});
fclose(fileID);

Use the gazebogenmsg function to generate dependences in the created folder.

gazebogenmsg(folderPath)

Validating ...
Selected compiler details: "Microsoft Visual C++ 2019 16.0"
[libprotobuf WARNING] No syntax specified for the proto file: MyPose.proto. Please use 'syntax = "proto2";' or 'syntax = "proto3";' to specify a syntax version. (Defaulted to proto2 syntax.) 
Building shared library ...
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26726 for x64 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
MyPose.pb.cc 
Microsoft (R) Incremental Linker Version 14.15.26726.0 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
/out:MyPose.pb.dll  
/dll  
/implib:MyPose.pb.lib  
/LIBPATH:B:\matlab\toolbox\shared\robotics\externalDependency\libprotobuf\lib  
libprotobuf3.lib  
/OUT:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.dll  
/IMPLIB:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.lib  
C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install\MyPose.pb.obj  
   Creating library C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.lib and object C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install/libmsgproto.exp 
Building MEX for "MyPose.proto" file ...
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building custom message utilities  ...
DONE.
 
To use the gazebo custom messages, execute following commands:
 
addpath('C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex62907275\customMessage\install')
savepath

Use the following commands to add and save the install path.

addpath(fullfile(folderPath,'install'))

savepath

Create a Gazebo plugin package 'MyPlugin' inside the custom message folder using the
packageGazeboPlugin function.

packageGazeboPlugin(fullfile(folderPath,'MyPlugin'),folderPath)

Generate Dependencies for Built-in Gazebo Message

Create a folder in a local directory.

 packageGazeboPlugin
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folderPath = fullfile(pwd,'customMessage');
mkdir(folderPath)
cd(folderPath)

Use the gazebogenmsg function to generate dependencies for a built-in gazebo message in the
specified folder.

gazebogenmsg(folderPath,"GazeboMessageList","gazebo.msgs.Image");

Validating ...
Selected compiler details: "Microsoft Visual C++ 2019 16.0"
Building shared library ...
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26726 for x64 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
image.pb.cc 
Microsoft (R) Incremental Linker Version 14.15.26726.0 
Copyright (C) Microsoft Corporation.  All rights reserved. 
 
/out:image.pb.dll  
/dll  
/implib:image.pb.lib  
/LIBPATH:B:\matlab\toolbox\shared\robotics\externalDependency\libprotobuf\lib  
libprotobuf3.lib  
/OUT:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.dll  
/IMPLIB:C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.lib  
C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install\image.pb.obj  
   Creating library C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.lib and object C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install/libmsgproto.exp 
Building MEX for "image.proto" file ...
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building with 'Microsoft Visual C++ 2019'.
MEX completed successfully.
Building custom message utilities  ...
DONE.
 
To use the gazebo custom messages, execute following commands:
 
addpath('C:\TEMP\Bdoc22b_2054784_6060\ibB18F8B\27\tpd7a74356\robotics-ex40128733\customMessage\install')
savepath

Use the following commands to add and save the install path.

addpath(fullfile(folderPath,'install'))

savepath

Create a Gazebo plugin package using the packageGazeboPlugin function.

packageGazeboPlugin

Input Arguments
packagePath — Name or path of Gazebo plugin package folder
string scalar | character vector

Name or path of the Gazebo plugin package folder, specified as a string scalar or a character vector.
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When specified as a folder name, the function creates a plugin folder and a compressed plugin file
with the specified name in the current directory.
Example: packageGazeboPlugin('MyPlugin')

When specified as a file path, the function creates a plugin folder and a compressed plugin file with
the specified file name in the specified folder.
Example: packageGazeboPlugin('C:\GazeboPlugin\MyPlugin')
Data Types: char | string

customMessagePath — Path of Gazebo custom message folder
string scalar | character vector

Path of the Gazebo custom message folder, specified as a string scalar or a character vector.

To create a Gazebo plugin with custom message support, specify the customMessagePath as a valid
path to the folder that contains the desired custom message dependencies.

When the packagePath argument is specified as a folder name, the function creates a plugin folder
and a compressed plugin file with the specified package name in the current directory.
Example: packageGazeboPlugin('MyPlugin','C:\GazeboCustomMsg')

When the packagePath argument is specified as a file path inside the custom message folder, the
function creates a plugin folder and a compressed plugin file with the specified file name in the
specified folder.
Example: packageGazeboPlugin('C:\GazeboCustomMsg
\MyPlugin','C:\GazeboCustomMsg')

Data Types: char | string

Output Arguments
outputPath — Path of plugin folder
character vector

Path of the plugin folder, returned as a character vector.

Limitations
• packageGazeboPlugin function not supported with MATLAB Compiler.

Version History
Introduced in R2020b

See Also
gazebogenmsg

Topics
“Perform Co-Simulation between Simulink and Gazebo”
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parts
Extract quaternion parts

Syntax
[a,b,c,d] = parts(quat)

Description
[a,b,c,d] = parts(quat) returns the parts of the quaternion array as arrays, each the same size
as quat.

Examples

Convert Quaternion to Matrix of Quaternion Parts

Convert a quaternion representation to parts using the parts function.

Create a two-element column vector of quaternions by specifying the parts.

quat = quaternion([1:4;5:8])

quat = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

Recover the parts from the quaternion matrix using the parts function. The parts are returned as
separate output arguments, each the same size as the input 2-by-1 column vector of quaternions.

[qA,qB,qC,qD] = parts(quat)

qA = 2×1

     1
     5

qB = 2×1

     2
     6

qC = 2×1

     3
     7

qD = 2×1
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     4
     8

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as a quaternion or array of quaternions.
Data Types: quaternion

Output Arguments
[a,b,c,d] — Quaternion parts
scalar | vector | matrix | multidimensional array

Quaternion parts, returned as four arrays: a, b, c, and d. Each part is the same size as quat.
Data Types: single | double

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
classUnderlying | compact

Objects
quaternion
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plotTransforms
Plot 3-D transforms from translations and rotations

Syntax
ax = plotTransforms(translations,rotations)
ax = plotTransforms(transformations)
ax = plotTransforms( ___ ,Name,Value)

Description
ax = plotTransforms(translations,rotations) draws transform frames in a 3-D figure
window using the specified translations translations, and rotations, rotations. The z-axis always
points upward.

ax = plotTransforms(transformations) draws transform frames for the specified SE(2) or
SE(3) transformations, transformations.

ax = plotTransforms( ___ ,Name,Value) specifies additional options using name-value
arguments. Specify multiple name-value arguments to set multiple options.

Input Arguments
translations — xyz-positions
[x y z] vector | matrix of [x y z] vectors

xyz-positions specified as a vector or matrix of [x y z] vectors. Each row represents a new frame to
plot with a corresponding orientation in rotations.
Example: [1 1 1; 2 2 2]

rotations — Rotations of xyz-positions
quaternion array | matrix of [w x y z] quaternion vectors | N-element array of so2 or so3
objects

Rotations of xyz-positions specified as a quaternion array, N-by-4 matrix of [w x y z] quaternion
vectors, or an N-element array of so2 or so3 objects. N is the total number of rotations, and each
element of the array, each row of the matrix or rotation transformation objects represent the rotation
of the xyz-positions specified in translations.

If rotations is an N-element array of so2 or so3 objects, each element must be of the same type.
Example: [1 1 1 0; 1 3 5 0]

transformations — Transformation
se2 object | se3 object | M-element array of se2 or se3 objects

Transformations, specified as an se2 object, an se3 object, or an M-element array of se2 or se3
objects. M is the total number of transformations.

If you specify transformations as an array, each element must be of the same type.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FrameSize',5

FrameSize — Size of frames and attached meshes
positive numeric scalar

Size of frame and attached meshes, specified as positive numeric scalar.

FrameColor — Color of frames
"rgb" (default) | RGB triplet | string scalar

Color of frames, specified as an RGB triplet or string scalar.
Example: [0 0 1] or "green"

FrameAxisLabels — xyz labels of coordinate frame
"off" (default) | "on"

xyz labels of the coordinate frame, specified as "off" to hide the labels or "on"to show the labels.

FrameAxisLabels — Frame axis labels
"" (default) | string | N-element array of strings

Frame axis labels, specified as a string or N-element array of strings, where N is the total number of
frames and each string corresponds to one frame at the same index of the T, translations, or
rotations.

AxisLabels — xyz labels of plotting axes
"off" (default) | "on"

xyz labels of the plotting axes, specified as "off" to hide the labels or "on"to show the labels.

InertialZDirection — Direction of positive z-axis of inertial frame
"up" (default) | "down"

Direction of the positive z-axis of inertial frame, specified as either "up" or "down". In the plot, the
positive z-axis always points up.

MeshFilePath — File path of mesh file attached to frames
character vector | string scalar

File path of mesh file attached to frames, specified as either a character vector or string scalar. The
mesh is attached to each plotted frame at the specified position and orientation. Provided .stl are

• "fixedwing.stl"
• "multirotor.stl"
• "groundvehicle.stl"

Example: 'fixedwing.stl'
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MeshColor — Color of attached mesh
"red" (default) | RGB triplet | string scalar

Color of attached mesh, specified as an RGB triplet or string scalar.
Example: [0 0 1] or "green"

View — Plot view
"3D" (default) | "2D" | three-element vector

Plot view, specified as "3D", "2D", or a three-element vector of the form [x,y,z] that sets the view
angle in Cartesian coordinates. The magnitude of x,y, and z are ignored.

Parent — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxes object. See axes or uiaxes.

Output Arguments
ax — Axes used to plot transforms
Axes object | UIAxes object

Axes used to plot the pose graph, specified as the comma-separated pair consisting of 'Parent' and
either an Axes or UIAxesobject. See axes or uiaxes.

Version History
Introduced in R2018b

See Also
Functions
quaternion | hom2cart | eul2quat | tform2quat | rotm2quat

Objects
se2 | se3 | so2 | so3

2 Functions

2-196



power, .^
Element-wise quaternion power

Syntax
C = A.^b

Description
C = A.^b raises each element of A to the corresponding power in b.

Examples

Raise a Quaternion to a Real Scalar Power

Create a quaternion and raise it to a real scalar power.

A = quaternion(1,2,3,4)

A = quaternion
     1 + 2i + 3j + 4k

b = 3;
C = A.^b

C = quaternion
     -86 -  52i -  78j - 104k

Raise a Quaternion Array to Powers from a Multidimensional Array

Create a 2-by-1 quaternion array and raise it to powers from a 2-D array.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

b = [1 0 2; 3 2 1]

b = 2×3

     1     0     2
     3     2     1

C = A.^b
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C = 2x3 quaternion array
        1 +    2i +    3j +    4k        1 +    0i +    0j +    0k      -28 +    4i +    6j +    8k
    -2110 -  444i -  518j -  592k     -124 +   60i +   70j +   80k        5 +    6i +    7j +    8k

Input Arguments
A — Base
scalar | vector | matrix | multidimensional array

Base, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion | single | double

b — Exponent
scalar | vector | matrix | multidimensional array

Exponent, specified as a real scalar, vector, matrix, or multidimensional array.
Data Types: single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Each element of quaternion A raised to the corresponding power in b, returned as a scalar, vector,
matrix, or multidimensional array.
Data Types: quaternion

Algorithms
The polar representation of a quaternion A = a + bi + c j + dk is given by

A = A cosθ + u sinθ

where θ is the angle of rotation, and û is the unit quaternion.

Quaternion A raised by a real exponent b is given by

P = A . ^b = A b cos bθ + u sin bθ

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
log | exp

Objects
quaternion
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prod
Product of a quaternion array

Syntax
quatProd = prod(quat)
quatProd = prod(quat,dim)

Description
quatProd = prod(quat) returns the quaternion product of the elements of the array.

quatProd = prod(quat,dim) calculates the quaternion product along dimension dim.

Examples

Product of Quaternions in Each Column

Create a 3-by-3 array whose elements correspond to their linear indices.

A = reshape(quaternion(randn(9,4)),3,3)

A = 3x3 quaternion array
      0.53767 +   2.7694i +    1.409j -  0.30344k      0.86217 +   0.7254i -   1.2075j +   0.8884k     -0.43359 -  0.20497i +  0.48889j -   0.8095k
       1.8339 -   1.3499i +   1.4172j +  0.29387k      0.31877 - 0.063055i +  0.71724j -   1.1471k      0.34262 -  0.12414i +   1.0347j -   2.9443k
      -2.2588 +   3.0349i +   0.6715j -  0.78728k      -1.3077 +  0.71474i +   1.6302j -   1.0689k       3.5784 +   1.4897i +  0.72689j +   1.4384k

Find the product of the quaternions in each column. The length of the first dimension is 1, and the
length of the second dimension matches size(A,2).

B = prod(A)

B = 1x3 quaternion array
     -19.837 -  9.1521i +  15.813j -  19.918k     -5.4708 - 0.28535i +   3.077j -  1.2295k      -10.69 -  8.5199i -  2.8801j - 0.65338k

Product of Specified Dimension of Quaternion Array

You can specify which dimension of a quaternion array to take the product of.

Create a 2-by-2-by-2 quaternion array.

A = reshape(quaternion(randn(8,4)),2,2,2);

Find the product of the elements in each page of the array. The length of the first dimension matches
size(A,1), the length of the second dimension matches size(A,2), and the length of the third
dimension is 1.
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dim = 3;
B = prod(A,dim)

B = 2x2 quaternion array
     -2.4847 +  1.1659i - 0.37547j +  2.8068k     0.28786 - 0.29876i - 0.51231j -  4.2972k
     0.38986 -  3.6606i -  2.0474j -   6.047k      -1.741 - 0.26782i +  5.4346j +  4.1452k

Input Arguments
quat — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Example: qProd = prod(quat) calculates the quaternion product along the first non-singleton
dimension of quat.
Data Types: quaternion

dim — Dimension
first non-singleton dimension (default) | positive integer

Dimension along which to calculate the quaternion product, specified as a positive integer. If dim is
not specified, prod operates along the first non-singleton dimension of quat.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatProd — Quaternion product
positive integer

Quaternion product, returned as quaternion array with one less non-singleton dimension than quat.

For example, if quat is a 2-by-2-by-5 array,

• prod(quat,1) returns a 1-by-2-by-5 array.
• prod(quat,2) returns a 2-by-1-by-5 array.
• prod(quat,3) returns a 2-by-2 array.

Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
mtimes | .*,times

Objects
quaternion

2 Functions

2-202



quat2axang
Convert quaternion to axis-angle rotation

Syntax
axang = quat2axang(quat)

Description
axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle rotation,
axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 0 0]; 
axang = quat2axang(quat)

axang = 1×4

    1.0000         0         0    1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2quat | quaternion

Topics
“Coordinate Transformations in Robotics”

2 Functions

2-204



quat2eul
Convert quaternion to Euler angles

Syntax
eul = quat2eul(quat)
eul = quat2eul(quat,sequence)

Description
eul = quat2eul(quat) converts a quaternion rotation, quat, to the corresponding Euler angles,
eul. The default order for Euler angle rotations is "ZYX".

eul = quat2eul(quat,sequence) converts a quaternion into Euler angles. The Euler angles are
specified in the axis rotation sequence, sequence. The default order for Euler angle rotations is
"ZYX".

Examples

Convert Quaternion to Euler Angles
quat = [0.7071 0.7071 0 0];
eulZYX = quat2eul(quat)

eulZYX = 1×3

         0         0    1.5708

Convert Quaternion to Euler Angles Using ZYZ Axis Order
quat = [0.7071 0.7071 0 0];
eulZYZ = quat2eul(quat,'ZYZ')

eulZYZ = 1×3

    1.5708   -1.5708   -1.5708

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of objects containing n
quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with w
as the scalar number.
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Example: [0.7071 0.7071 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2quat | quaternion

Topics
“Coordinate Transformations in Robotics”
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quat2rotm
Convert quaternion to rotation matrix

Syntax
rotm = quat2rotm(quat)

Description
rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation matrix, rotm.
When using the rotation matrix, premultiply it with the coordinates to be rotated (as opposed to
postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 0 0];
rotm = quat2rotm(quat)

rotm = 3×3

    1.0000         0         0
         0   -0.0000   -1.0000
         0    1.0000   -0.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of quaternion objects containing
n quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with
w as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2quat | quaternion

Topics
“Coordinate Transformations in Robotics”
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quat2tform
Convert quaternion to homogeneous transformation

Syntax
tform = quat2tform(quat)

Description
tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous transformation
matrix, tform. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation
quat = [0.7071 0.7071 0 0];
tform = quat2tform(quat)

tform = 4×4

    1.0000         0         0         0
         0   -0.0000   -1.0000         0
         0    1.0000   -0.0000         0
         0         0         0    1.0000

Input Arguments
quat — Unit quaternion
n-by-4 matrix | n-element vector of quaternion objects

Unit quaternion, specified as an n-by-4 matrix or n-element vector of objects containing n
quaternions. If the input is a matrix, each row is a quaternion vector of the form q = [w x y z], with w
as the scalar number.
Example: [0.7071 0.7071 0 0]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2quat | quaternion

Topics
“Coordinate Transformations in Robotics”
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rdivide, ./
Element-wise quaternion right division

Syntax
C = A./B

Description
C = A./B performs quaternion element-wise division by dividing each element of quaternion A by
the corresponding element of quaternion B.

Examples

Divide a Quaternion Array by a Real Scalar

Create a 2-by-1 quaternion array, and divide it element-by-element by a real scalar.

A = quaternion([1:4;5:8])

A = 2x1 quaternion array
     1 + 2i + 3j + 4k
     5 + 6i + 7j + 8k

B = 2;
C = A./B

C = 2x1 quaternion array
     0.5 +   1i + 1.5j +   2k
     2.5 +   3i + 3.5j +   4k

Divide a Quaternion Array by Another Quaternion Array

Create a 2-by-2 quaternion array, and divide it element-by-element by another 2-by-2 quaternion
array.

q1 = quaternion(magic(4));
A = reshape(q1,2,2)

A = 2x2 quaternion array
     16 +  2i +  3j + 13k      9 +  7i +  6j + 12k
      5 + 11i + 10j +  8k      4 + 14i + 15j +  1k

q2 = quaternion([1:4;3:6;2:5;4:7]);
B = reshape(q2,2,2)
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B = 2x2 quaternion array
     1 + 2i + 3j + 4k     2 + 3i + 4j + 5k
     3 + 4i + 5j + 6k     4 + 5i + 6j + 7k

C = A./B

C = 2x2 quaternion array
          2.7 -      0.1i -      2.1j -      1.7k       2.2778 + 0.092593i -  0.46296j -  0.57407k
       1.8256 - 0.081395i +  0.45349j -  0.24419k       1.4524 -      0.5i +   1.0238j -   0.2619k

Input Arguments
A — Dividend
scalar | vector | matrix | multidimensional array

Dividend, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

B — Divisor
scalar | vector | matrix | multidimensional array

Divisor, specified as a quaternion, an array of quaternions, a real scalar, or an array of real numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of the dimensions is 1.
Data Types: quaternion | single | double

Output Arguments
C — Result
scalar | vector | matrix | multidimensional array

Result of quaternion division, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Division

Given a quaternion A = a1 + a2i + a3 j + a4k and a real scalar p,

C = A . /p =
a1
p +

a2
p i +

a3
p j +

a4
p k
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Note For a real scalar p, A./p = A.\p.

Quaternion Division by a Quaternion Scalar

Given two quaternions A and B of compatible sizes,

C = A . /B = A . * B−1 = A . * con j(B)
norm(B)2

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
conj | ./,ldivide | norm | .*,times

Objects
quaternion
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quinticpolytraj
Generate fifth-order trajectories

Syntax
[q,qd,qdd,pp] = quinticpolytraj(wayPoints,timePoints,tSamples)
[q,qd,qdd,pp] = quinticpolytraj( ___ ,Name,Value)

Description
[q,qd,qdd,pp] = quinticpolytraj(wayPoints,timePoints,tSamples) generates a fifth-
order polynomial that achieves a given set of input waypoints with corresponding time points. The
function outputs positions, velocities, and accelerations at the given time samples, tSamples. The
function also returns the piecewise polynomial pp form of the polynomial trajectory with respect to
time.

[q,qd,qdd,pp] = quinticpolytraj( ___ ,Name,Value) specifies additional parameters as
Name,Value pair arguments using any combination of the previous syntaxes.

Examples

Compute Quintic Trajectory for 2-D Planar Motion

Use the quinticpolytraj function with a given set of 2-D xy waypoints. Time points for the
waypoints are also given.

wpts = [1 4 4 3 -2 0; 0 1 2 4 3 1];
tpts = 0:5;

Specify a time vector for sampling the trajectory. Sample at a smaller interval than the specified time
points.

tvec = 0:0.01:5;

Compute the quintic trajectory. The function outputs the trajectory positions (q), velocity (qd),
acceleration (qdd), and polynomial coefficients (pp) of the quintic polynomial.

[q, qd, qdd, pp] = quinticpolytraj(wpts, tpts, tvec);

Plot the quintic trajectories for the x- and y-positions. Compare the trjactory with each waypoint.

plot(tvec, q)
hold all
plot(tpts, wpts, 'x')
xlabel('t')
ylabel('Positions')
legend('X-positions','Y-positions')
hold off
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You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y- positions.

figure
plot(q(1,:),q(2,:),'.b',wpts(1,:),wpts(2,:),'or')
xlabel('X')
ylabel('Y')
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Input Arguments
wayPoints — Waypoints for trajectory
n-by-p matrix

Points for waypoints of trajectory, specified as an n-by-p matrix, where n is the dimension of the
trajectory and p is the number of waypoints.
Example: [1 4 4 3 -2 0; 0 1 2 4 3 1]
Data Types: single | double

timePoints — Time points for waypoints of trajectory
p-element vector

Time points for waypoints of trajectory, specified as a p-element vector.
Example: [0 2 4 5 8 10]
Data Types: single | double

tSamples — Time samples for trajectory
m-element vector

Time samples for the trajectory, specified as an m-element vector. The output position, q, velocity, qd,
and accelerations, qdd, are sampled at these time intervals.
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Example: 0:0.01:10
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'VelocityBoundaryCondition',[1 0 -1 -1 0 0; 1 1 1 -1 -1 -1]

VelocityBoundaryCondition — Velocity boundary conditions for each waypoint
zeroes(n,p) (default) | n-by-p matrix

Velocity boundary conditions for each waypoint, specified as the comma-separated pair consisting of
'VelocityBoundaryCondition' and an n-by-p matrix. Each row corresponds to the velocity at all
of p waypoints for the respective variable in the trajectory.
Example: [1 0 -1 -1 0 0; 1 1 1 -1 -1 -1]
Data Types: single | double

AccelerationBoundaryCondition — Acceleration boundary conditions for each waypoint
zeroes(n,p) (default) | n-by-p matrix

Acceleration boundary conditions for each waypoint, specified as the comma-separated pair
consisting of 'AccelerationBoundaryCondition' and an n-by-p matrix. Each row corresponds to
the acceleration at all of p waypoints for the respective variable in the trajectory.
Example: [1 0 -1 -1 0 0; 1 1 1 -1 -1 -1]
Data Types: single | double

Output Arguments
q — Positions of trajectory
m-element vector

Positions of the trajectory at the given time samples in tSamples, returned as an m-element vector,
where m is the length of tSamples.
Data Types: single | double

qd — Velocities of trajectory
vector

Velocities of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double

qdd — Accelerations of trajectory
vector

Accelerations of the trajectory at the given time samples in tSamples, returned as a vector.
Data Types: single | double
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pp — Piecewise-polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. For example, cubic polynomials have an order of 4.
• dim: n. The dimension of the control point positions.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bsplinepolytraj | contopptraj | cubicpolytraj | rottraj | transformtraj | trapveltraj
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randrot
Uniformly distributed random rotations

Syntax
R = randrot
R = randrot(m)
R = randrot(m1,...,mN)
R = randrot([m1,...,mN])

Description
R = randrot returns a unit quaternion drawn from a uniform distribution of random rotations.

R = randrot(m) returns an m-by-m matrix of unit quaternions drawn from a uniform distribution of
random rotations.

R = randrot(m1,...,mN) returns an m1-by-...-by-mN array of random unit quaternions, where m1,
…, mN indicate the size of each dimension. For example, randrot(3,4) returns a 3-by-4 matrix of
random unit quaternions.

R = randrot([m1,...,mN]) returns an m1-by-...-by-mN array of random unit quaternions, where
m1,…, mN indicate the size of each dimension. For example, randrot([3,4]) returns a 3-by-4 matrix
of random unit quaternions.

Examples

Matrix of Random Rotations

Generate a 3-by-3 matrix of uniformly distributed random rotations.

r = randrot(3)

r = 3x3 quaternion array
      0.17446 +  0.59506i -  0.73295j +  0.27976k      0.69704 - 0.060589i +  0.68679j -  0.19695k      0.35191 +  0.74478i +  0.52322j -  0.21842k
      0.21908 -  0.89875i -    0.298j +  0.23548k    -0.049744 +  0.59691i +  0.56459j +  0.56786k      0.17527 -  0.46955i +  0.52986j -  0.68414k
       0.6375 +  0.49338i -  0.24049j +  0.54068k       0.2979 -  0.53568i +  0.31819j +  0.72323k     -0.30189 -  0.22864i -  0.83159j +  0.40626k

Create Uniform Distribution of Random Rotations

Create a vector of 500 random quaternions. Use rotatepoint to visualize the distribution of the
random rotations applied to point (1, 0, 0).

q = randrot(500,1);

pt = rotatepoint(q, [1 0 0]);
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figure
scatter3(pt(:,1), pt(:,2), pt(:,3))
axis equal

Input Arguments
m — Size of square matrix
integer

Size of square quaternion matrix, specified as an integer value. If m is 0 or negative, then R is
returned as an empty matrix.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

m1,...,mN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integer values. If the size of any dimension is 0 or
negative, then R is returned as an empty array.
Example: randrot(2,3) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

[m1,...,mN] — Vector of size of each dimension
row vector of integer values
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Vector of size of each dimension, specified as a row vector of two or more integer values. If the size of
any dimension is 0 or negative, then R is returned as an empty array.
Example: randrot([2,3]) returns a 2-by-3 matrix of random quaternions.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
R — Random quaternions
scalar | vector | matrix | multidimensional array

Random quaternions, returned as a quaternion or array of quaternions.
Data Types: quaternion

Version History
Introduced in R2019a

References
[1] Shoemake, K. "Uniform Random Rotations." Graphics Gems III (K. David, ed.). New York:

Academic Press, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quaternion
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readBinaryOccupancyGrid
Read binary occupancy grid

Syntax
map = readBinaryOccupancyGrid(msg)
map = readBinaryOccupancyGrid(msg,thresh)
map = readBinaryOccupancyGrid(msg,thresh,val)

Description
map = readBinaryOccupancyGrid(msg) returns a binaryOccupancyMap object by reading the
data inside a ROS message, msg, which must be a 'nav_msgs/OccupancyGrid' message. All
message data values greater than or equal to the occupancy threshold are set to occupied, 1, in the
map. All other values, including unknown values (-1) are set to unoccupied, 0, in the map.

Note The msg input is an 'nav_msgs/OccupancyGrid' ROS message. For more info, see
OccupancyGrid.

map = readBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for occupied
values. All values greater than or equal to the threshold are set to occupied, 1. All other values are
set to unoccupied, 0.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for unknown
values (-1 ). By default, all unknown values are set to unoccupied, 0.

Input Arguments
msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object handle.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to the threshold
is set to occupied, 1. All other values are set to unoccupied, 0.
Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values (-1) are set to
the given value.
Data Types: double | logical
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Output Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, returned as a binaryOccupancyMap object handle. map is converted from a
'nav_msgs/OccupancyGrid' message on the ROS network. The object is a grid of binary values,
where 1 indicates an occupied location and 0 indications an unoccupied location.

Version History
Introduced in R2015a

See Also
Objects
OccupancyGrid | occupancyMap | binaryOccupancyMap

Functions
rosReadOccupancyGrid | rosWriteBinaryOccupancyGrid | rosWriteOccupancyGrid
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roboticsAddons
Install add-ons for robotics

Syntax
roboticsAddons

Description
roboticsAddons allows you to download and install add-ons for Robotics System Toolbox. Use this
function to open the Add-ons Explorer to browse the available add-ons.

Examples

Install Add-ons for Robotics System Toolbox™

To install add-ons for Robotics System Toolbox, run the function.

roboticsAddons

This function opens the Add-on Explorer with the Robotics System Toolbox set as the filter. Select the
desired add-on and choose your install action.

Version History
Introduced in R2016a

See Also
Topics
“Install Robotics System Toolbox Add-ons”
“ROS Custom Message Support” (ROS Toolbox)
“Get and Manage Add-Ons”
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roboticsSupportPackages
Download and install support packages for Robotics System Toolbox

Note roboticsSupportPackages has been removed. Use roboticsAddons instead.

Syntax
roboticsSupportPackages

Description
roboticsSupportPackages opens the Support Package Installer to download and install support
packages for Robotics System Toolbox. For more details, see “Install Robotics System Toolbox Add-
ons”.

Examples

Open Robotics System Toolbox Support Package Installer

roboticsSupportPackages

Version History
Introduced in R2015a
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rotateframe
Quaternion frame rotation

Syntax
rotationResult = rotateframe(quat,cartesianPoints)

Description
rotationResult = rotateframe(quat,cartesianPoints) rotates the frame of reference for
the Cartesian points using the quaternion, quat. The elements of the quaternion are normalized
before use in the rotation.

Examples

Rotate Frame Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in the order x, y,
and z. For convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;
plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the frame 45 degrees and
another to rotate the point -90 degrees about the z-axis. Use rotateframe to perform the rotations.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','frame');
               
rereferencedPoint = rotateframe(quat,[x,y,z])

rereferencedPoint = 2×3

    0.7071   -0.0000         0
   -0.5000    0.5000         0

Plot the rereferenced points.

plot(rereferencedPoint(1,1),rereferencedPoint(1,2),'bo')
plot(rereferencedPoint(2,1),rereferencedPoint(2,2),'go')
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Rereference Group of Points using Quaternion

Define two points in three-dimensional space. Define a quaternion to rereference the points by first
rotating the reference frame about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotateframe to reference both points using the quaternion rotation operator. Display the result.

rP = rotateframe(quat,[a;b])

rP = 2×3

    0.6124   -0.3536    0.7071
    0.5000    0.8660   -0.0000

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion or vector of quaternions.
Data Types: quaternion

cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix
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Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Re-referenced Cartesian points
vector | matrix

Cartesian points defined in reference to rotated reference frame, returned as a vector or matrix the
same size as cartesianPoints.

The data type of the re-referenced Cartesian points is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Quaternion frame rotation re-references a point specified in R3 by rotating the original frame of
reference according to a specified quaternion:

Lq u = q*uq

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotateframe function takes a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],

point = [x,y,z];
rereferencedPoint = rotateframe(q,point)

the rotateframe function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = q*uqq
4 Converts the quaternion output, vq, back to R3

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotatepoint

Objects
quaternion
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rotatepoint
Quaternion point rotation

Syntax
rotationResult = rotatepoint(quat,cartesianPoints)

Description
rotationResult = rotatepoint(quat,cartesianPoints) rotates the Cartesian points using
the quaternion, quat. The elements of the quaternion are normalized before use in the rotation.

Examples

Rotate Point Using Quaternion Vector

Define a point in three dimensions. The coordinates of a point are always specified in order x, y, z. For
convenient visualization, define the point on the x-y plane.

x = 0.5;
y = 0.5;
z = 0;

plot(x,y,'ko')
hold on
axis([-1 1 -1 1])
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Create a quaternion vector specifying two separate rotations, one to rotate the point 45 and another
to rotate the point -90 degrees about the z-axis. Use rotatepoint to perform the rotation.

quat = quaternion([0,0,pi/4; ...
                   0,0,-pi/2],'euler','XYZ','point');
               
rotatedPoint = rotatepoint(quat,[x,y,z])

rotatedPoint = 2×3

   -0.0000    0.7071         0
    0.5000   -0.5000         0

Plot the rotated points.

plot(rotatedPoint(1,1),rotatedPoint(1,2),'bo')
plot(rotatedPoint(2,1),rotatedPoint(2,2),'go')
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Rotate Group of Points Using Quaternion

Define two points in three-dimensional space. Define a quaternion to rotate the point by first rotating
about the z-axis 30 degrees and then about the new y-axis 45 degrees.

a = [1,0,0];
b = [0,1,0];
quat = quaternion([30,45,0],'eulerd','ZYX','point');

Use rotatepoint to rotate both points using the quaternion rotation operator. Display the result.

rP = rotatepoint(quat,[a;b])

rP = 2×3

    0.6124    0.5000   -0.6124
   -0.3536    0.8660    0.3536

Visualize the original orientation and the rotated orientation of the points. Draw lines from the origin
to each of the points for visualization purposes.

plot3(a(1),a(2),a(3),'bo');

hold on
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grid on
axis([-1 1 -1 1 -1 1])
xlabel('x')
ylabel('y')
zlabel('z')

plot3(b(1),b(2),b(3),'ro');
plot3(rP(1,1),rP(1,2),rP(1,3),'bd')
plot3(rP(2,1),rP(2,2),rP(2,3),'rd')

plot3([0;rP(1,1)],[0;rP(1,2)],[0;rP(1,3)],'k')
plot3([0;rP(2,1)],[0;rP(2,2)],[0;rP(2,3)],'k')
plot3([0;a(1)],[0;a(2)],[0;a(3)],'k')
plot3([0;b(1)],[0;b(2)],[0;b(3)],'k')

Input Arguments
quat — Quaternion that defines rotation
scalar | vector

Quaternion that defines rotation, specified as a scalar quaternion, row vector of quaternions, or
column vector of quaternions.
Data Types: quaternion
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cartesianPoints — Three-dimensional Cartesian points
1-by-3 vector | N-by-3 matrix

Three-dimensional Cartesian points, specified as a 1-by-3 vector or N-by-3 matrix.
Data Types: single | double

Output Arguments
rotationResult — Repositioned Cartesian points
vector | matrix

Rotated Cartesian points defined using the quaternion rotation, returned as a vector or matrix the
same size as cartesianPoints.
Data Types: single | double

Algorithms
Quaternion point rotation rotates a point specified in R3 according to a specified quaternion:

Lq(u) = quq*

where q is the quaternion, * represents conjugation, and u is the point to rotate, specified as a
quaternion.

For convenience, the rotatepoint function takes in a point in R3 and returns a point in R3. Given a
function call with some arbitrary quaternion, q = a + bi + cj + dk, and arbitrary coordinate, [x,y,z],
for example,

rereferencedPoint = rotatepoint(q,[x,y,z])

the rotatepoint function performs the following operations:

1 Converts point [x,y,z] to a quaternion:

uq = 0 + xi + y j + zk
2 Normalizes the quaternion, q:

qn = q
a2 + b2 + c2 + d2

3 Applies the rotation:

vq = quqq*
4 Converts the quaternion output, vq, back to R3

Version History
Introduced in R2018a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotateframe

Objects
quaternion
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rotm2axang
Convert rotation matrix to axis-angle rotation

Syntax
axang = rotm2axang(rotm)

Description
axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation matrix, rotm, to
the corresponding axis-angle representation, axang. The input rotation matrix must be in the
premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
axang = rotm2axang(rotm)

axang = 1×4

    1.0000         0         0    3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and must be orthonormal. The input rotation matrix must be in the premultiply
form for rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix
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Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axis, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2rotm

Topics
“Coordinate Transformations in Robotics”
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rotm2eul
Convert rotation matrix to Euler angles

Syntax
eul = rotm2eul(rotm)
eul = rotm2eul(rotm,sequence)

Description
eul = rotm2eul(rotm) converts a rotation matrix, rotm, to the corresponding Euler angles, eul.
The input rotation matrix must be in the premultiply form for rotations. The default order for Euler
angle rotations is "ZYX".

For more details on Euler angle rotations, see “Euler Angles”.

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The Euler angles
are specified in the axis rotation sequence, sequence. The default order for Euler angle rotations is
"ZYX".

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYX = rotm2eul(rotm)

eulZYX = 1×3

         0    1.5708         0

Convert Rotation Matrix to Euler Angles Using ZYZ Axis Order

rotm = [0 0 1; 0 1 0; -1 0 0];
eulZYZ = rotm2eul(rotm,'ZYZ')

eulZYZ = 1×3

   -3.1416   -1.5708   -3.1416

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix
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Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2rotm

Topics
“Coordinate Transformations in Robotics”
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rotm2quat
Convert rotation matrix to quaternion

Syntax
quat = rotm2quat(rotm)

Description
quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit quaternion
representation, quat. The input rotation matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 0 1; 0 1 0; -1 0 0];
quat = rotm2quat(rotm)

quat = 1×4

    0.7071         0    0.7071         0

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
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Example: [0.7071 0.7071 0 0]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2rotm

Topics
“Coordinate Transformations in Robotics”
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rotm2tform
Convert rotation matrix to homogeneous transformation

Syntax
tform = rotm2tform(rotm)

Description
tform = rotm2tform(rotm) converts the rotation matrix, rotm, into a homogeneous
transformation matrix, tform. The input rotation matrix must be in the premultiply form for
rotations. When using the transformation matrix, premultiply it with the coordinates to be
transformed (as opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];
tform = rotm2tform(rotm)

tform = 4×4

     1     0     0     0
     0    -1     0     0
     0     0    -1     0
     0     0     0     1

Input Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. The input rotation matrix must be in the premultiply form for
rotations.

Note Rotation matrices that are slightly non-orthonormal can give complex outputs. Consider
validating your matrix before inputting to the function.

Example: [0 0 1; 0 1 0; -1 0 0]
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Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2rotm

Topics
“Coordinate Transformations in Robotics”
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rotmat
Convert quaternion to rotation matrix

Syntax
rotationMatrix = rotmat(quat,rotationType)

Description
rotationMatrix = rotmat(quat,rotationType) converts the quaternion, quat, to an
equivalent rotation matrix representation.

Examples

Convert Quaternion to Rotation Matrix for Point Rotation

Define a quaternion for use in point rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','point')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j + 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'point')

rotationMatrix = 3×3

    0.7071   -0.0000    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           sind(theta) ; ...
      0             1           0           ; ...
     -sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) -sind(gamma) ;     ...
      0             sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry
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rotationMatrixVerification = 3×3

    0.7071         0    0.7071
    0.3536    0.8660   -0.3536
   -0.6124    0.5000    0.6124

Convert Quaternion to Rotation Matrix for Frame Rotation

Define a quaternion for use in frame rotation.

theta = 45;
gamma = 30;
quat = quaternion([0,theta,gamma],'eulerd','ZYX','frame')

quat = quaternion
       0.8924 +  0.23912i +  0.36964j - 0.099046k

Convert the quaternion to a rotation matrix.

rotationMatrix = rotmat(quat,'frame')

rotationMatrix = 3×3

    0.7071   -0.0000   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124

To verify the rotation matrix, directly create two rotation matrices corresponding to the rotations
about the y- and x-axes. Multiply the rotation matrices and compare to the output of rotmat.

theta = 45;
gamma = 30;

ry = [cosd(theta)   0           -sind(theta) ; ...
      0             1           0           ; ...
     sind(theta)   0           cosd(theta)];
 
rx = [1             0           0           ;      ...
      0             cosd(gamma) sind(gamma) ;     ...
      0             -sind(gamma) cosd(gamma)];

rotationMatrixVerification = rx*ry

rotationMatrixVerification = 3×3

    0.7071         0   -0.7071
    0.3536    0.8660    0.3536
    0.6124   -0.5000    0.6124
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Convert Quaternion Vector to Rotation Matrices

Create a 3-by-1 normalized quaternion vector.

qVec = normalize(quaternion(randn(3,4)));

Convert the quaternion array to rotation matrices. The pages of rotmatArray correspond to the
linear index of qVec.

rotmatArray = rotmat(qVec,'frame');

Assume qVec and rotmatArray correspond to a sequence of rotations. Combine the quaternion
rotations into a single representation, then apply the quaternion rotation to arbitrarily initialized
Cartesian points.

loc = normalize(randn(1,3));
quat = prod(qVec);
rotateframe(quat,loc)

ans = 1×3

    0.9524    0.5297    0.9013

Combine the rotation matrices into a single representation, then apply the rotation matrix to the
same initial Cartesian points. Verify the quaternion rotation and rotation matrix result in the same
orientation.

totalRotMat = eye(3);
for i = 1:size(rotmatArray,3)
    totalRotMat = rotmatArray(:,:,i)*totalRotMat;
end
totalRotMat*loc'

ans = 3×1

    0.9524
    0.5297
    0.9013

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

rotationType — Type or rotation
'frame' | 'point'

Type of rotation represented by the rotationMatrix output, specified as 'frame' or 'point'.
Data Types: char | string
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Output Arguments
rotationMatrix — Rotation matrix representation
3-by-3 matrix | 3-by-3-by-N multidimensional array

Rotation matrix representation, returned as a 3-by-3 matrix or 3-by-3-by-N multidimensional array.

• If quat is a scalar, rotationMatrix is returned as a 3-by-3 matrix.
• If quat is non-scalar, rotationMatrix is returned as a 3-by-3-by-N multidimensional array,

where rotationMatrix(:,:,i) is the rotation matrix corresponding to quat(i).

The data type of the rotation matrix is the same as the underlying data type of quat.
Data Types: single | double

Algorithms
Given a quaternion of the form

q = a + bi + c j + dk ,

the equivalent rotation matrix for frame rotation is defined as

2a2− 1 + 2b2 2bc + 2ad 2bd− 2ac
2bc− 2ad 2a2− 1 + 2c2 2cd + 2ab

2bd + 2ac 2cd− 2ab 2a2− 1 + 2d2

.

The equivalent rotation matrix for point rotation is the transpose of the frame rotation matrix:

2a2− 1 + 2b2 2bc− 2ad 2bd + 2ac
2bc + 2ad 2a2− 1 + 2c2 2cd− 2ab

2bd− 2ac 2cd + 2ab 2a2− 1 + 2d2

.

Version History
Introduced in R2018a

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Functions
rotvec | rotvecd | euler | eulerd

Objects
quaternion
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rottraj
Generate trajectories between orientation rotation matrices

Syntax
[R,omega,alpha] = rottraj(r0,rF,tInterval,tSamples)
[R,omega,alpha] = rottraj(r0,rF,tInterval,tSamples,Name,Value)

Description
[R,omega,alpha] = rottraj(r0,rF,tInterval,tSamples) generates a trajectory that
interpolates between two orientations, r0 and rF, with points based on the time interval and given
time samples.

[R,omega,alpha] = rottraj(r0,rF,tInterval,tSamples,Name,Value) specifies additional
parameters using Name,Value pair arguments.

Examples

Interpolate Trajectory Between Quaternions

Define two quaternion waypoints to interpolate between.

q0 = quaternion([0 pi/4 -pi/8],'euler','ZYX','point');
qF = quaternion([3*pi/2 0 -3*pi/4],'euler','ZYX','point');

Specify a vector of times to sample the quaternion trajectory.

tvec = 0:0.01:5;

Generate the trajectory. Plot the results.

[qInterp1,w1,a1] = rottraj(q0,qF,[0 5],tvec);

plot(tvec,compact(qInterp1))
title('Quaternion Interpolation (Uniform Time Scaling)')
xlabel('t')
ylabel('Quaternion Values')
legend('W','X','Y','Z')
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Interpolate Trajectory Between Rotation Matrices

Define two rotation matrix waypoints to interpolate between.

r0 = [1 0 0; 0 1 0; 0 0 1];
rF = [0 0 1; 1 0 0; 0 0 0];

Specify a vector of times to sample the quaternion trajectory.

tvec = 0:0.1:1;

Generate the trajectory. Plot the results using plotTransforms. Convert the rotation matrices to
quaternions and specify zero translation. The figure shows all the intermediate rotations of the
coordinate frame.

[rInterp1,w1,a1] = rottraj(r0,rF,[0 1],tvec);

rotations = rotm2quat(rInterp1);
zeroVect = zeros(length(rotations),1);
translations = [zeroVect,zeroVect,zeroVect];

plotTransforms(translations,rotations)
xlabel('X')
ylabel('Y')
zlabel('Z')
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Input Arguments
r0 — Initial orientation
3-by-3 rotation matrix | quaternion object

Initial orientation, specified as a 3-by-3 rotation matrix or quaternion object. The function
generates a trajectory that starts at the initial orientation, r0, and goes to the final orientation, rF.
Example: quaternion([0 pi/4 -pi/8],'euler','ZYX','point');
Data Types: single | double

rF — Final orientation
3-by-3 rotation matrix | quaternion object

Final orientation, specified as a 3-by-3 rotation matrix or quaternion object. The function generates
a trajectory that starts at the initial orientation, r0, and goes to the final orientation, rF.
Example: quaternion([3*pi/2 0 -3*pi/4],'euler','ZYX','point')
Data Types: single | double

tInterval — Start and end times for trajectory
two-element vector

Start and end times for the trajectory, specified as a two-element vector.

 rottraj

2-253



Example: [0 10]
Data Types: single | double

tSamples — Time samples for trajectory
m-element vector

Time samples for the trajectory, specified as an m-element vector.
Example: 0:0.01:10
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'TimeScaling',[0 1 2; 0 1 0; 0 0 0]

TimeScaling — Time scaling vector and first two derivatives
3-by-m vector

Time scaling vector and the first two derivatives, specified as the comma-separated pair of
'TimeScaling' and a 3-by-m vector, where m is the length of tSamples. By default, the time
scaling is a linear time scaling between the time points in tInterval.

For a nonlinear time scaling, specify the values of the time points in the first row. The second and
third rows are the velocity and acceleration of the time points, respectively. For example, to follow the
path with a linear velocity to the halfway point, and then jump to the end, the time-scaling would be:

s(1,:) = [0 0.25 0.5 1 1 1] % Position
s(2,:) = [1    1   1 0 0 0] % Velocity
s(3,:) = [0    0   0 0 0 0] % Acceleration

Data Types: single | double

Output Arguments
R — Orientation trajectory
3-by-3-by-m rotation matrix array | quaternion object array

Orientation trajectory, returned as a 3-by-3-by-m rotation matrix array or quaternion object array,
where m is the number of points in tSamples. The output type depends on the inputs from r0 and
rF.

omega — Orientation angular velocity
3-by-m matrix

Orientation angular velocity, returned as a 3-by-m matrix, where m is the number of points in
tSamples.

alpha — Orientation angular acceleration
3-by-m matrix
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Orientation angular acceleration, returned as a 3-by-m matrix, where m is the number of points in
tSamples

Limitations
• When specifying your r0 and rF input arguments as a 3-by-3 rotation matrix, they are converted

to a quaternion object before interpolating the trajectory . If your rotation matrix does not
follow a right-handed coordinate system or does not have a direct conversion to quaternions, this
conversion may result in different initial and final rotations in the output trajectory.

Version History
Introduced in R2019a

References
[1] Dam, Erik B., Martin Koch, and Martin Lillholm. Quaternions, Interpolation and Animation.

Technical Report DIKU-TR-98/5 (July 1998). http://web.mit.edu/2.998/www/
QuaternionReport1.pdf

[2] Graf, Basile. Quaternions and Dynamics. arXiv:0811.2889 [math.DS] (2008). https://arxiv.org/pdf/
0811.2889.pdf

[3] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.
Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bsplinepolytraj | contopptraj | cubicpolytraj | quinticpolytraj | transformtraj |
trapveltraj | quaternion
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rotvec
Convert quaternion to rotation vector (radians)

Syntax
rotationVector = rotvec(quat)

Description
rotationVector = rotvec(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in radians. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Radians

Convert a random quaternion scalar to a rotation vector in radians

quat = quaternion(randn(1,4));
rotvec(quat)

ans = 1×3

    1.6866   -2.0774    0.7929

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar quaternion, vector, matrix, or multidimensional array of
quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (radians)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotations vectors, where each row
represents the [X Y Z] angles of the rotation vectors in radians. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double
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Algorithms
All rotations in 3-D can be represented by a three-element axis of rotation and a rotation angle, for a
total of four elements. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotvecd | euler | eulerd

Objects
quaternion
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rotvecd
Convert quaternion to rotation vector (degrees)

Syntax
rotationVector = rotvecd(quat)

Description
rotationVector = rotvecd(quat) converts the quaternion array, quat, to an N-by-3 matrix of
equivalent rotation vectors in degrees. The elements of quat are normalized before conversion.

Examples

Convert Quaternion to Rotation Vector in Degrees

Convert a random quaternion scalar to a rotation vector in degrees.

quat = quaternion(randn(1,4));
rotvecd(quat)

ans = 1×3

   96.6345 -119.0274   45.4312

Input Arguments
quat — Quaternion to convert
scalar | vector | matrix | multidimensional array

Quaternion to convert, specified as scalar, vector, matrix, or multidimensional array of quaternions.
Data Types: quaternion

Output Arguments
rotationVector — Rotation vector (degrees)
N-by-3 matrix

Rotation vector representation, returned as an N-by-3 matrix of rotation vectors, where each row
represents the [x y z] angles of the rotation vectors in degrees. The ith row of rotationVector
corresponds to the element quat(i).

The data type of the rotation vector is the same as the underlying data type of quat.
Data Types: single | double

2 Functions

2-258



Algorithms
All rotations in 3-D can be represented by four elements: a three-element axis of rotation and a
rotation angle. If the rotation axis is constrained to be unit length, the rotation angle can be
distributed over the vector elements to reduce the representation to three elements.

Recall that a quaternion can be represented in axis-angle form

q = cos θ 2 + sin θ 2 xi+y j + zk ,

where θ is the angle of rotation in degrees, and [x,y,z] represent the axis of rotation.

Given a quaternion of the form

q = a + bi + c j + dk ,

you can solve for the rotation angle using the axis-angle form of quaternions:

θ = 2cos−1 a .

Assuming a normalized axis, you can rewrite the quaternion as a rotation vector without loss of
information by distributing θ over the parts b, c, and d. The rotation vector representation of q is

qrv = θ
sin θ 2

[b, c, d] .

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
rotvec | euler | eulerd

Objects
quaternion
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slerp
Spherical linear interpolation

Syntax
q0 = slerp(q1,q2,T)

Description
q0 = slerp(q1,q2,T) spherically interpolates between q1 and q2 by the interpolation coefficient
T. The function always chooses the shorter interpolation path between q1 and q2.

Examples

Interpolate Between Two Quaternions

Create two quaternions with the following interpretation:

1 a = 45 degree rotation around the z-axis
2 c = -45 degree rotation around the z-axis

a = quaternion([45,0,0],'eulerd','ZYX','frame');
c = quaternion([-45,0,0],'eulerd','ZYX','frame');

Call slerp with the quaternions a and c and specify an interpolation coefficient of 0.5.

interpolationCoefficient = 0.5;

b = slerp(a,c,interpolationCoefficient);

The output of slerp, b, represents an average rotation of a and c. To verify, convert b to Euler angles
in degrees.

averageRotation = eulerd(b,'ZYX','frame')

averageRotation = 1×3

     0     0     0

The interpolation coefficient is specified as a normalized value between 0 and 1, inclusive. An
interpolation coefficient of 0 corresponds to the a quaternion, and an interpolation coefficient of 1
corresponds to the c quaternion. Call slerp with coefficients 0 and 1 to confirm.

b = slerp(a,c,[0,1]);
eulerd(b,'ZYX','frame')

ans = 2×3

   45.0000         0         0
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  -45.0000         0         0

You can create smooth paths between quaternions by specifying arrays of equally spaced
interpolation coefficients.

path = 0:0.1:1;

interpolatedQuaternions = slerp(a,c,path);

For quaternions that represent rotation only about a single axis, specifying interpolation coefficients
as equally spaced results in quaternions equally spaced in Euler angles. Convert
interpolatedQuaternions to Euler angles and verify that the difference between the angles in
the path is constant.

k = eulerd(interpolatedQuaternions,'ZYX','frame');
abc = abs(diff(k))

abc = 10×3

    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0
    9.0000         0         0

Alternatively, you can use the dist function to verify that the distance between the interpolated
quaternions is consistent. The dist function returns angular distance in radians; convert to degrees
for easy comparison.

def = rad2deg(dist(interpolatedQuaternions(2:end),interpolatedQuaternions(1:end-1)))

def = 1×10

    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000    9.0000

SLERP Minimizes Great Circle Path

The SLERP algorithm interpolates along a great circle path connecting two quaternions. This
example shows how the SLERP algorithm minimizes the great circle path.

Define three quaternions:

1 q0 - quaternion indicating no rotation from the global frame
2 q179 - quaternion indicating a 179 degree rotation about the z-axis
3 q180 - quaternion indicating a 180 degree rotation about the z-axis
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4 q181 - quaternion indicating a 181 degree rotation about the z-axis

q0 = ones(1,'quaternion');

q179 = quaternion([179,0,0],'eulerd','ZYX','frame');

q180 = quaternion([180,0,0],'eulerd','ZYX','frame');

q181 = quaternion([181,0,0],'eulerd','ZYX','frame');

Use slerp to interpolate between q0 and the three quaternion rotations. Specify that the paths are
traveled in 10 steps.

T = linspace(0,1,10);

q179path = slerp(q0,q179,T);
q180path = slerp(q0,q180,T);
q181path = slerp(q0,q181,T);

Plot each path in terms of Euler angles in degrees.

q179pathEuler = eulerd(q179path,'ZYX','frame');
q180pathEuler = eulerd(q180path,'ZYX','frame');
q181pathEuler = eulerd(q181path,'ZYX','frame');

plot(T,q179pathEuler(:,1),'bo', ...
     T,q180pathEuler(:,1),'r*', ...
     T,q181pathEuler(:,1),'gd');
legend('Path to 179 degrees', ...
       'Path to 180 degrees', ...
       'Path to 181 degrees')
xlabel('Interpolation Coefficient')
ylabel('Z-Axis Rotation (Degrees)')
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The path between q0 and q179 is clockwise to minimize the great circle distance. The path between
q0 and q181 is counterclockwise to minimize the great circle distance. The path between q0 and
q180 can be either clockwise or counterclockwise, depending on numerical rounding.

Show Interpolated Quaternions on Sphere

Create two quaternions.

q1 = quaternion([75,-20,-10],'eulerd','ZYX','frame');
q2 = quaternion([-45,20,30],'eulerd','ZYX','frame');

Define the interpolation coefficient.

T = 0:0.01:1;

Obtain the interpolated quaternions.

quats = slerp(q1,q2,T);

Obtain the corresponding rotate points.

pts = rotatepoint(quats,[1 0 0]);

Show the interpolated quaternions on a unit sphere.

figure
[X,Y,Z] = sphere;
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surf(X,Y,Z,'FaceColor',[0.57 0.57 0.57])
hold on;

scatter3(pts(:,1),pts(:,2),pts(:,3))
view([69.23 36.60])
axis equal

Note that the interpolated quaternions follow the shorter path from q1 to q2.

Input Arguments
q1 — Quaternion
scalar | vector | matrix | multidimensional array

Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of them is 1.
Data Types: quaternion

q2 — Quaternion
scalar | vector | matrix | multidimensional array
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Quaternion to interpolate, specified as a scalar, vector, matrix, or multidimensional array of
quaternions.

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: quaternion

T — Interpolation coefficient
scalar | vector | matrix | multidimensional array

Interpolation coefficient, specified as a scalar, vector, matrix, or multidimensional array of numbers
with each element in the range [0,1].

q1, q2, and T must have compatible sizes. In the simplest cases, they can be the same size or any one
can be a scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the
inputs are either the same or one of the dimension sizes is 1.
Data Types: single | double

Output Arguments
q0 — Interpolated quaternion
scalar | vector | matrix | multidimensional array

Interpolated quaternion, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion spherical linear interpolation (SLERP) is an extension of linear interpolation along a
plane to spherical interpolation in three dimensions. The algorithm was first proposed in [1]. Given
two quaternions, q1 and q2, SLERP interpolates a new quaternion, q0, along the great circle that
connects q1 and q2. The interpolation coefficient, T, determines how close the output quaternion is to
either q1 and q2.

The SLERP algorithm can be described in terms of sinusoids:

q0 = sin (1− T)θ
sin θ q1 + sin Tθ

sin θ q2

where q1 and q2 are normalized quaternions, and θ is half the angular distance between q1 and q2.

Version History
Introduced in R2018b

References
[1] Shoemake, Ken. "Animating Rotation with Quaternion Curves." ACM SIGGRAPH Computer

Graphics Vol. 19, Issue 3, 1985, pp. 345–354.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
dist | meanrot

Objects
quaternion
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tform2axang
Convert homogeneous transformation to axis-angle rotation

Syntax
axang = tform2axang(tform)

Description
axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components of tform are
ignored. The input homogeneous transformation must be in the premultiply form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform = [1 0 0 0; 0 0 -1 0; 0 1 0 0; 0 0 0 1];
axang = tform2axang(tform)

axang = 1×4

    1.0000         0         0    1.5708

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations. The first
three elements of every row specify the rotation axes, and the last element defines the rotation angle
(in radians).
Example: [1 0 0 pi/2]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
axang2tform

Topics
“Coordinate Transformations in Robotics”
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tform2eul
Extract Euler angles from homogeneous transformation

Syntax
eul = tform2eul(tform)
eul = tform2eul(tform, sequence)

Description
eul = tform2eul(tform) extracts the rotational component from a homogeneous transformation,
tform, and returns it as Euler angles, eul. The translational components of tform are ignored. The
input homogeneous transformation must be in the premultiply form for transformations. The default
order for Euler angle rotations is "ZYX".

eul = tform2eul(tform, sequence) extracts the Euler angles, eul, from a homogeneous
transformation, tform, using the specified rotation sequence, sequence. The default order for Euler
angle rotations is "ZYX".

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYX = tform2eul(tform)

eulZYX = 1×3

         0         0    3.1416

Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ Rotation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
eulZYZ = tform2eul(tform,'ZYZ')

eulZYZ = 1×3

         0   -3.1416    3.1416

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix
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Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

sequence — Axis rotation sequence
"ZYX" (default) | "ZYZ" | "XYZ"

Axis rotation sequence for the Euler angles, specified as one of these string scalars:

• "ZYX" (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• "ZYZ" – The order of rotation angles is z-axis, y-axis, z-axis.
• "XYZ" – The order of rotation angles is x-axis, y-axis, z-axis.

Data Types: string | char

Output Arguments
eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles. Each row
represents one Euler angle set.
Example: [0 0 1.5708]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
eul2tform

Topics
“Coordinate Transformations in Robotics”

2 Functions

2-270



tform2quat
Extract quaternion from homogeneous transformation

Syntax
quat = tform2quat(tform)

Description
quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational components of tform
are ignored. The input homogeneous transformation must be in the premultiply form for
transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
quat = tform2quat(tform)

quat = 1×4

     0     1     0     0

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each quaternion, one per
row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
quat2tform

Topics
“Coordinate Transformations in Robotics”
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tform2rotm
Extract rotation matrix from homogeneous transformation

Syntax
rotm = tform2rotm(tform)

Description
rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The translational
components of tform are ignored. The input homogeneous transformation must be in the pre-
multiply form for transformations. When using the rotation matrix, premultiply it with the coordinates
to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];
rotm = tform2rotm(tform)

rotm = 3×3

     1     0     0
     0    -1     0
     0     0    -1

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the pre-multiply form for
transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each rotation matrix
has a size of 3-by-3 and is orthonormal. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying).
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Example: [0 0 1; 0 1 0; -1 0 0]

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotm2tform

Topics
“Coordinate Transformations in Robotics”
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tform2trvec
Extract translation vector from homogeneous transformation

Syntax
trvec = tform2trvec(tform)

Description
trvec = tform2trvec(tform) extracts the Cartesian representation of translation vector, trvec ,
from a homogeneous transformation, tform. The rotational components of tform are ignored. The
input homogeneous transformation must be in the premultiply form for transformations.

Examples

Extract Translation Vector from Homogeneous Transformation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];
trvec = tform2trvec(tform)

trvec = 1×3

    0.5000    5.0000   -1.2000

Input Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous transformations.
The input homogeneous transformation must be in the premultiply form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-3 matrix containing n translation
vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Version History
Introduced in R2015a
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
trvec2tform

Topics
“Coordinate Transformations in Robotics”

2 Functions
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times, .*
Element-wise quaternion multiplication

Syntax
quatC = A.*B

Description
quatC = A.*B returns the element-by-element quaternion multiplication of quaternion arrays.

You can use quaternion multiplication to compose rotation operators:

• To compose a sequence of frame rotations, multiply the quaternions in the same order as the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the order pq. The rotation operator becomes pq ∗v pq , where v represents the object
to rotate in quaternion form. * represents conjugation.

• To compose a sequence of point rotations, multiply the quaternions in the reverse order of the
desired sequence of rotations. For example, to apply a p quaternion followed by a q quaternion,
multiply in the reverse order, qp. The rotation operator becomes qp v qp ∗.

Examples

Multiply Two Quaternion Vectors

Create two vectors, A and B, and multiply them element by element.

A = quaternion([1:4;5:8]);
B = A;
C = A.*B

C = 2x1 quaternion array
     -28 +   4i +   6j +   8k
    -124 +  60i +  70j +  80k

Multiply Two Quaternion Arrays

Create two 3-by-3 arrays, A and B, and multiply them element by element.

A = reshape(quaternion(randn(9,4)),3,3);
B = reshape(quaternion(randn(9,4)),3,3);
C = A.*B

C = 3x3 quaternion array
     0.60169 +  2.4332i -  2.5844j + 0.51646k    -0.49513 +  1.1722i +  4.4401j -   1.217k      2.3126 + 0.16856i +  1.0474j -  1.0921k
     -4.2329 +  2.4547i +  3.7768j + 0.77484k    -0.65232 - 0.43112i -  1.4645j - 0.90073k     -1.8897 - 0.99593i +  3.8331j + 0.12013k
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     -4.4159 +  2.1926i +  1.9037j -  4.0303k     -2.0232 +  0.4205i - 0.17288j +  3.8529k     -2.9137 -  5.5239i -  1.3676j +  3.0654k

Note that quaternion multiplication is not commutative:

isequal(C,B.*A)

ans = logical
   0

Multiply Quaternion Row and Column Vectors

Create a row vector a and a column vector b, then multiply them. The 1-by-3 row vector and 4-by-1
column vector combine to produce a 4-by-3 matrix with all combinations of elements multiplied.

a = [zeros('quaternion'),ones('quaternion'),quaternion(randn(1,4))]

a = 1x3 quaternion array
           0 +       0i +       0j +       0k           1 +       0i +       0j +       0k     0.53767 +  1.8339i -  2.2588j + 0.86217k

b = quaternion(randn(4,4))

b = 4x1 quaternion array
      0.31877 +   3.5784i +   0.7254j -  0.12414k
      -1.3077 +   2.7694i - 0.063055j +   1.4897k
     -0.43359 -   1.3499i +  0.71474j +    1.409k
      0.34262 +   3.0349i -  0.20497j +   1.4172k

a.*b

ans = 4x3 quaternion array
            0 +        0i +        0j +        0k      0.31877 +   3.5784i +   0.7254j -  0.12414k      -4.6454 +   2.1636i +   2.9828j +   9.6214k
            0 +        0i +        0j +        0k      -1.3077 +   2.7694i - 0.063055j +   1.4897k      -7.2087 -   4.2197i +   2.5758j +   5.8136k
            0 +        0i +        0j +        0k     -0.43359 -   1.3499i +  0.71474j +    1.409k       2.6421 -     5.32i -   2.3841j -   1.3547k
            0 +        0i +        0j +        0k      0.34262 +   3.0349i -  0.20497j +   1.4172k      -7.0663 -  0.76439i -  0.86648j +   7.5369k

Input Arguments
A — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double
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B — Array to multiply
scalar | vector | matrix | multidimensional array

Array to multiply, specified as a quaternion, an array of quaternions, a real scalar, or an array of real
numbers.

A and B must have compatible sizes. In the simplest cases, they can be the same size or one can be a
scalar. Two inputs have compatible sizes if, for every dimension, the dimension sizes of the inputs are
the same or one of them is 1.
Data Types: quaternion | single | double

Output Arguments
quatC — Quaternion product
scalar | vector | matrix | multidimensional array

Quaternion product, returned as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Algorithms
Quaternion Multiplication by a Real Scalar

Given a quaternion,

q = aq + bqi + cq j + dqk,

the product of q and a real scalar β is

βq = βaq + βbqi + βcq j + βdqk

Quaternion Multiplication by a Quaternion Scalar

The definition of the basis elements for quaternions,

i2 = j2 = k2 = ijk = − 1 ,

can be expanded to populate a table summarizing quaternion basis element multiplication:

 1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

When reading the table, the rows are read first, for example: ij = k and ji = −k.

Given two quaternions, q = aq + bqi + cq j + dqk, and p = ap + bpi + cp j + dpk, the multiplication can be
expanded as:
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z = pq = ap + bpi + cp j + dpk aq + bqi + cq j + dqk
= apaq + apbqi + apcq j + apdqk

+bpaqi + bpbqi2 + bpcqij + bpdqik

+cpaq j + cpbq ji + cpcq j2 + cpdq jk

+dpaqk + dpbqki + dpcqkj + dpdqk2

You can simplify the equation using the quaternion multiplication table.

z = pq = apaq + apbqi + apcq j + apdqk
+bpaqi− bpbq + bpcqk − bpdq j
+cpaq j− cpbqk − cpcq + cpdqi
+dpaqk + dpbq j− dpcqi− dpdq

Version History
Introduced in R2018a

References
[1] Kuipers, Jack B. Quaternions and Rotation Sequences: A Primer with Applications to Orbits,

Aerospace, and Virtual Reality. Princeton, NJ: Princeton University Press, 2007.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
prod | mtimes, *

Objects
quaternion
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transformScan
Transform laser scan based on relative pose

Syntax
transScan = transformScan(scan,relPose)

[transRanges,transAngles] = transformScan(ranges,angles,relPose)

Description
transScan = transformScan(scan,relPose) transforms the laser scan specified in scan by
using the specified relative pose, relPose.

[transRanges,transAngles] = transformScan(ranges,angles,relPose) transforms the
laser scan specified in ranges and angles by using the specified relative pose, relPose.

Examples

Transform Laser Scans

Create a lidarScan object. Specify the ranges and angles as vectors.

refRanges = 5*ones(1,300);
refAngles = linspace(-pi/2,pi/2,300);
refScan = lidarScan(refRanges,refAngles);

Translate the laser scan by an [x y] offset of (0.5,0.2).

transformedScan = transformScan(refScan,[0.5 0.2 0]);

Rotate the laser scan by 20 degrees.

rotateScan = transformScan(refScan,[0,0,deg2rad(20)]);

Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are distances from a
sensor at specified angles. The vector must be the same length as the corresponding angles vector.
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angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector in radians. These angle values are the specific
angles of the specified ranges. The vector must be the same length as the corresponding ranges
vector.

relPose — Relative pose of current scan
[x y theta]

Relative pose of current scan, specified as [x y theta], where [x y] is the translation in meters
and theta is the rotation in radians.

Output Arguments
transScan — Transformed lidar scan readings
lidarScan object

Transformed lidar scan readings, specified as a lidarScan object.

transRanges — Range values of transformed scan
vector

Range values of transformed scan, returned as a vector in meters. These range values are distances
from a sensor at specified transAngles. The vector is the same length as the corresponding
transAngles vector.

transAngles — Angle values from scan data
vector

Angle values of transformed scan, returned as a vector in radians. These angle values are the specific
angles of the specified transRanges. The vector is the same length as the corresponding ranges
vector.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
transformScan
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transformtraj
Generate trajectories between two transformations

Syntax
[tforms,vel,acc] = transformtraj(T0,TF,tInterval,tSamples)
[tforms,vel,acc] = transformtraj(T0,TF,tInterval,tSamples,Name,Value)

Description
[tforms,vel,acc] = transformtraj(T0,TF,tInterval,tSamples) generates a trajectory
that interpolates between two 4-by-4 homogeneous transformations, T0 and TF, with points based on
the time interval and given time samples.

[tforms,vel,acc] = transformtraj(T0,TF,tInterval,tSamples,Name,Value) specifies
additional parameters using Name,Value pair arguments.

Examples

Interpolate Between Homogenous Transformations

Build transformations from two orientations and positions. Specifiy the time interval and vector of
times for interpolating.

t0 = axang2tform([0 1 1 pi/4])*trvec2tform([0 0 0]);
tF = axang2tform([1 0 1 6*pi/5])*trvec2tform([1 1 1]);
tInterval = [0 1];
tvec = 0:0.01:1;

Interpolate between the points. Plot the trajectory using plotTransforms. Convert the
transformations to quaternion rotations and linear transitions. The figure shows all the intermediate
transformations of the coordinate frame.

[tfInterp, v1, a1] = transformtraj(t0,tF,tInterval,tvec);

rotations = tform2quat(tfInterp);
translations = tform2trvec(tfInterp);

plotTransforms(translations,rotations)
xlabel('X')
ylabel('Y')
zlabel('Z')
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Input Arguments
T0 — Initial transformation
4-by-4 homogeneous transformation

Initial transformation, specified as a 4-by-4 homogeneous transformation. The function generates a
trajectory that starts at the initial transformation, T0, and goes to the final transformation, TF.
Data Types: single | double

TF — Final transformation
4-by-4 homogeneous transformation

Final transformation, specified as a 4-by-4 homogeneous transformation. The function generates a
trajectory that starts at the initial transformation, T0, and goes to the final transformation, TF.
Data Types: single | double

tInterval — Start and end times for trajectory
two-element vector

Start and end times for the trajectory, specified as a two-element vector in seconds.
Example: [0 10]
Data Types: single | double
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tSamples — Time samples for trajectory
m-element vector

Time samples for the trajectory, specified as an m-element vector in seconds.
Example: 0:0.01:10
Data Types: single | double

tSamples — Time samples for trajectory
m-element vector

Time samples for the trajectory, specified as an m-element vector.
Example: 0:0.01:10
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'TimeScaling',[0 1 2; 0 1 0; 0 0 0]

TimeScaling — Time scaling vector and first two derivatives
3-by-m vector

Time scaling vector and the first two derivatives, specified as a 3-by-m vector, where m is the length
of tSamples. By default, the time scaling is a linear time scaling between the time points in
tInterval.

For a nonlinear time scaling, specify the values of the time points as positions in meters in the first
row. The second and third rows are the velocity and acceleration of the time points in m/s and m/s2,
respectively. For example, to follow the path with a linear velocity to the halfway point, and then jump
to the end, the time-scaling would be:

s(1,:) = [0 0.25 0.5 1 1 1] % Position
s(2,:) = [1    1   1 0 0 0] % Velocity
s(3,:) = [0    0   0 0 0 0] % Acceleration

Data Types: single | double

Output Arguments
tforms — Transformation trajectory
4-by-4-by-m homogeneous transformation matrix array

Transformation trajectory, returned as a 4-by-4-by-m homogeneous transformation matrix array,
where m is the number of points in tSamples.

vel — Transformation velocities
6-by-m matrix
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Transformation velocities, returned as a 6-by-m matrix in m/s, where m is the number of points in
tSamples. The first three elements are the angular velocities, and the second three elements are the
velocities in time.

acc — Transformation accelerations
6-by-m matrix

Transformation accelerations, returned as a 6-by-m matrix in m/s2, where m is the number of points
in tSamples. The first three elements are the angular accelerations, and the second three elements
are the accelerations in time.

Version History
Introduced in R2019a

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.

Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bsplinepolytraj | contopptraj | cubicpolytraj | quinticpolytraj | rottraj |
transformtraj | trapveltraj
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transpose, .'
Transpose a quaternion array

Syntax
Y = quat.'

Description
Y = quat.' returns the non-conjugate transpose of the quaternion array, quat.

Examples

Vector Transpose

Create a vector of quaternions and compute its nonconjugate transpose.

quat = quaternion(randn(4,4))

quat = 4x1 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k
       1.8339 -   1.3077i +   2.7694j - 0.063055k
      -2.2588 -  0.43359i -   1.3499j +  0.71474k
      0.86217 +  0.34262i +   3.0349j -  0.20497k

quatTransposed = quat.'

quatTransposed = 1x4 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k       1.8339 -   1.3077i +   2.7694j - 0.063055k      -2.2588 -  0.43359i -   1.3499j +  0.71474k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Matrix Transpose

Create a matrix of quaternions and compute its nonconjugate transpose.

quat = [quaternion(randn(2,4)),quaternion(randn(2,4))]

quat = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       3.5784 -   1.3499i +   0.7254j +  0.71474k
       1.8339 +  0.86217i -   1.3077j +  0.34262k       2.7694 +   3.0349i - 0.063055j -  0.20497k

quatTransposed = quat.'

quatTransposed = 2x2 quaternion array
      0.53767 -   2.2588i +  0.31877j -  0.43359k       1.8339 +  0.86217i -   1.3077j +  0.34262k
       3.5784 -   1.3499i +   0.7254j +  0.71474k       2.7694 +   3.0349i - 0.063055j -  0.20497k
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Input Arguments
quat — Quaternion array to transpose
vector | matrix

Quaternion array to transpose, specified as a vector or matrix of quaternions. transpose is defined
for 1-D and 2-D arrays. For higher-order arrays, use permute.
Data Types: quaternion

Output Arguments
Y — Transposed quaternion array
vector | matrix

Transposed quaternion array, returned as an N-by-M array, where quat was specified as an M-by-N
array.

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ctranspose, '

Objects
quaternion
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trapveltraj
Generate trajectories with trapezoidal velocity profiles

Syntax
[q,qd,qdd,tSamples,pp] = trapveltraj(wayPoints,numSamples)
[q,qd,qdd,tSamples,pp] = trapveltraj(wayPoints,numSamples,Name,Value)

Description
[q,qd,qdd,tSamples,pp] = trapveltraj(wayPoints,numSamples) generates a trajectory
through a given set of input waypoints that follow a trapezoidal velocity profile. The function outputs
positions, velocities, and accelerations at the given time samples, tSamples, based on the specified
number of samples, numSamples. The function also returns the piecewise polynomial pp form of the
polynomial trajectory with respect to time.

[q,qd,qdd,tSamples,pp] = trapveltraj(wayPoints,numSamples,Name,Value) specifies
additional parameters using Name,Value pair arguments.

Examples

Compute Trapezoidal Velocity Trajectory for 2-D Planar Motion

Use the trapveltraj function with a given set of 2-D xy waypoints.

wpts = [0 45 15 90 45; 90 45 -45 15 90];

Compute the trajectory for a given number of samples (501). The function outputs the trajectory
positions (q), velocity (qd), acceleration (qdd), time vector (tvec), and polynomial coefficients (pp) of
the polynomial that achieves the waypoints using trapezoidal velocities.

[q,qd,qdd,tvec,pp] = trapveltraj(wpts,501);

Plot the trajectories for the x- and y-positions and the trapezoial velocity profile between each
waypoint.

subplot(2,1,1)
plot(tvec, q)
xlabel('t')
ylabel('Positions')
legend('X','Y')
subplot(2,1,2)
plot(tvec, qd)
xlabel('t')
ylabel('Velocities')
legend('X','Y')
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You can also verify the actual positions in the 2-D plane. Plot the separate rows of the q vector and
the waypoints as x- and y-positions.

figure
plot(q(1,:),q(2,:),'-b',wpts(1,:),wpts(2,:),'or')
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Input Arguments
wayPoints — Waypoints for trajectory
n-by-p matrix

Points for waypoints of trajectory, specified as an n-by-p matrix, where n is the dimension of the
trajectory and p is the number of waypoints.
Example: [1 4 4 3 -2 0; 0 1 2 4 3 1]
Data Types: single | double

numSamples — Number of samples in output trajectory
positive integer

Number of samples in output trajectory, specified as a positive integer.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
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Note Due to the nature of the trapezoidal velocity profile, you can only set at most two of the
following parameters.

Example: 'PeakVelocity',5

PeakVelocity — Peak velocity of the velocity profile
scalar | n-element vector | n-by-(p–1) matrix

Peak velocity of the profile segment, specified as the comma-separated pair consisting of
'PeakVelocity' and a scalar, vector, or matrix. This peak velocity is the highest velocity achieved
during the trapezoidal velocity profile.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p–1) matrix is
applied to each element of the trajectory for each waypoint.
Data Types: single | double

Acceleration — Acceleration of velocity profile
scalar | n-element vector | n-by-(p–1) matrix

Acceleration of the velocity profile, specified as the comma-separated pair consisting of
'Acceleration' and a scalar, vector, or matrix. This acceleration defines the constant acceleration
from zero velocity to the PeakVelocity value.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p–1) matrix is
applied to each element of the trajectory for each waypoint.
Data Types: single | double

EndTime — Duration of each trajectory segment
scalar | n-element vector | n-by-(p–1) matrix

Duration of each of the p–1 trajectory segments, specified as the comma-separated pair consisting of
'EndTime' and a scalar, vector, or matrix.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p–1) matrix is
applied to each element of the trajectory for each waypoint.
Data Types: single | double

AccelTime — Duration of acceleration phase of velocity profile
scalar | n-element vector | n-by-(p–1) matrix

Duration of acceleration phase of velocity profile, specified as the comma-separated pair consisting of
'AccelTime' and a scalar, vector, or matrix.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p–1) matrix is
applied to each element of the trajectory for each waypoint.
Data Types: single | double
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Output Arguments
q — Positions of trajectory
n-by-m matrix

Positions of the trajectory at the given time samples in tSamples, returned as n-by-m matrix, where
n is the dimension of the trajectory, and m is equal to numSamples.
Data Types: single | double

qd — Velocities of trajectory
n-by-m matrix

Velocities of the trajectory at the given time samples in tSamples, returned as n-by-m matrix, where
n is the dimension of the trajectory, and m is equal to numSamples.
Data Types: single | double

qdd — Accelerations of trajectory
n-by-m matrix

Accelerations of the trajectory at the given time samples in tSamples, returned as n-by-m matrix,
where n is the dimension of the trajectory, and m is equal to numSamples.
Data Types: single | double

tSamples — Time samples for trajectory
m-element vector

Time samples for the trajectory, returned as an m-element vector. The output position, q, velocity, qd,
and accelerations, qdd are sampled at these time intervals.
Example: 0:0.01:10
Data Types: single | double

pp — Piecewise polynomials
cell array or structures

Piecewise polynomials, returned as a cell array of structures that defines the polynomial for each
section of the piecewise trajectory. If all the elements of the trajectory share the same breaks, the cell
array is a single piecewise polynomial structure. Otherwise, the cell array has n elements, which
correspond to each of the different trajectory elements (dimensions). Each structure contains the
fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. For example, cubic polynomials have an order of 4.
• dim: n. The dimension of the control point positions.
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You can build your own piecewise polynomials using mkpp, or evaluate the polynomial at specified
times using ppval.

pp — Piecewise-polynomial
structure

Piecewise-polynomial, returned as a structure that defines the polynomial for each section of the
piecewise trajectory. You can build your own piecewise polynomials using mkpp, or evaluate the
polynomial at specified times using ppval. The structure contains the fields:

• form: 'pp'.
• breaks: p-element vector of times when the piecewise trajectory changes forms. p is the number

of waypoints.
• coefs: n(p–1)-by-order matrix for the coefficients for the polynomials. n(p–1) is the dimension of

the trajectory times the number of pieces. Each set of n rows defines the coefficients for the
polynomial that described each variable trajectory.

• pieces: p–1. The number of breaks minus 1.
• order: Degree of the polynomial + 1. For example, cubic polynomials have an order of 4.
• dim: n. The dimension of the control point positions.

Version History
Introduced in R2019a

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning and Control.

Cambridge: Cambridge University Press, 2017.

[2] Spong, Mark W., Seth Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John Wiley &
Sons, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
bsplinepolytraj | contopptraj | cubicpolytraj | quinticpolytraj | rottraj |
transformtraj | trapveltraj

Topics
“Design Trajectory with Velocity Limits Using Trapezoidal Velocity Profile”
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trvec2tform
Convert translation vector to homogeneous transformation

Syntax
tform = trvec2tform(trvec)

Description
tform = trvec2tform(trvec) converts the Cartesian representation of a translation vector,
trvec, to the corresponding homogeneous transformation, tform. When using the transformation
matrix, premultiply it with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Translation Vector to Homogeneous Transformation

trvec = [0.5 6 100];
tform = trvec2tform(trvec)

tform = 4×4

    1.0000         0         0    0.5000
         0    1.0000         0    6.0000
         0         0    1.0000  100.0000
         0         0         0    1.0000

Input Arguments
trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, specified as an n-by-3 matrix containing n translation
vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Output Arguments
tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to be rotated (as
opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
tform2trvec

Topics
“Coordinate Transformations in Robotics”
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uminus, -
Quaternion unary minus

Syntax
mQuat = -quat

Description
mQuat = -quat negates the elements of quat and stores the result in mQuat.

Examples

Negate Elements of Quaternion Matrix

Unary minus negates each part of a the quaternion. Create a 2-by-2 matrix, Q.

Q = quaternion(randn(2),randn(2),randn(2),randn(2))

Q = 2x2 quaternion array
      0.53767 +  0.31877i +   3.5784j +   0.7254k      -2.2588 -  0.43359i -   1.3499j +  0.71474k
       1.8339 -   1.3077i +   2.7694j - 0.063055k      0.86217 +  0.34262i +   3.0349j -  0.20497k

Negate the parts of each quaternion in Q.

R = -Q

R = 2x2 quaternion array
     -0.53767 -  0.31877i -   3.5784j -   0.7254k       2.2588 +  0.43359i +   1.3499j -  0.71474k
      -1.8339 +   1.3077i -   2.7694j + 0.063055k     -0.86217 -  0.34262i -   3.0349j +  0.20497k

Input Arguments
quat — Quaternion array
scalar | vector | matrix | multidimensional array

Quaternion array, specified as a scalar, vector, matrix, or multidimensional array.
Data Types: quaternion

Output Arguments
mQuat — Negated quaternion array
scalar | vector | matrix | multidimensional array

Negated quaternion array, returned as the same size as quat.
Data Types: quaternion
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Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
minus, -

Objects
quaternion
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updateErrorDynamicsFromStep
Update values of NaturalFrequency and DampingRatio properties given desired step response

Syntax
updateErrorDynamicsFromStep(motionModel,settlingTime,overshoot)
updateErrorDynamicsFromStep(motionModel,settlingTime,overshoot,jointIndex)

Description
updateErrorDynamicsFromStep(motionModel,settlingTime,overshoot) updates the values
of the NaturalFrequency and DampingRatio properties of the given jointSpaceMotionModel
object given the desired step response.

updateErrorDynamicsFromStep(motionModel,settlingTime,overshoot,jointIndex)
updates the NaturalFrequency and DampingRatio properties for a specific joint. In this case, the
values of SettlingTime and Overshoot must be provided as scalars because they apply to a single
joint.

Examples

Create Joint-Space Motion Model

This example shows how to create and use a jointSpaceMotionModel object for a manipulator
robot in joint-space.

Create the Robot

robot = loadrobot("kinovaGen3","DataFormat","column","Gravity",[0 0 -9.81]);

Set Up the Simulation

Set the timespan to be 1 s with a timestep size of 0.01 s. Set the initial state to be the robots, home
configuration with a velocity of zero.

tspan = 0:0.01:1;
initialState = [homeConfiguration(robot); zeros(7,1)];

Define the a reference state with a target position, zero velocity, and zero acceleration.

targetState = [pi/4; pi/3; pi/2; -pi/3; pi/4; -pi/4; 3*pi/4; zeros(7,1); zeros(7,1)];

Create the Motion Model

Model the system with computed torque control and error dynamics defined by a moderately fast step
response with 5% overshoot.

motionModel = jointSpaceMotionModel("RigidBodyTree",robot);
updateErrorDynamicsFromStep(motionModel,.3,.05);
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Simulate the Robot

Use the derivative function of the model as the input to the ode45 solver to simulate the behavior
over 1 second.

[t,robotState] = ode45(@(t,state)derivative(motionModel,state,targetState),tspan,initialState);

Plot the Response

Plot the positions of all the joints actuating to their target state. Joints with a higher displacement
between the starting position and the target position actuate to the target at a faster rate than those
with a lower displacement. This leads to an overshoot, but all of the joints have the same settling
time.

figure
plot(t,robotState(:,1:motionModel.NumJoints));
hold all;
plot(t,targetState(1:motionModel.NumJoints)*ones(1,length(t)),"--");
title("Joint Position (Solid) vs Reference (Dashed)");
xlabel("Time (s)")
ylabel("Position (rad)");

Input Arguments
motionModel — jointSpaceMotionModel object
jointSpaceMotionModel object
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The jointSpaceMotionModel object, which defines the properties of the motion model.

settlingTime — Settling time of system
n-element vector

Settling time required to reach a 2% tolerance band in seconds, specified as a scalar or an n-element
vector. n is the number of nonfixed joints in the rigidBodyTree of the jointSpaceMotionModel in
the motionModel argument.

overshoot — Overshoot of system
n-element vector

The overshoot relative to a unit step, specified as a scalar or an n-element vector. n is the number of
nonfixed joints in the rigidBodyTree of the jointSpaceMotionModel in the motionModel
argument.

jointIndex — Joint index
scalar

The index of the joint for which NaturalFrequency and DampingRatio is updated given the unit-
step error dynamics. In this case, settling time and overshoot must be specified as scalars.

Version History
Introduced in R2019b

References
[1] Ogata, Katsuhiko. Modern Control Engineering 4th ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Classes
jointSpaceMotionModel | taskSpaceMotionModel
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writeBinaryOccupancyGrid
Write values from grid to ROS message

Syntax
writeBinaryOccupancyGrid(msg,map)

Description
writeBinaryOccupancyGrid(msg,map) writes occupancy values and other information to the
ROS message, msg, from the binary occupancy grid, map.

Note The msg input is an 'nav_msgs/OccupancyGrid' ROS message. For more info, see
OccupancyGrid.

Input Arguments
map — Binary occupancy grid
binaryOccupancyMap object handle

Binary occupancy grid, specified as a binaryOccupancyMap object handle. map is converted to a
'nav_msgs/OccupancyGrid' message on the ROS network. map is an object with a grid of binary
values, where 1 indicates an occupied location and 0 indications an unoccupied location.

msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object handle.

Version History
Introduced in R2015a

See Also
Functions
rosReadBinaryOccupancyGrid | rosReadOccupancyMap3D | rosReadOccupancyGrid |
rosWriteOccupancyGrid
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zeros
Create quaternion array with all parts set to zero

Syntax
quatZeros = zeros('quaternion')
quatZeros = zeros(n,'quaternion')
quatZeros = zeros(sz,'quaternion')
quatZeros = zeros(sz1,...,szN,'quaternion')

quatZeros = zeros( ___ ,'like',prototype,'quaternion')

Description
quatZeros = zeros('quaternion') returns a scalar quaternion with all parts set to zero.

quatZeros = zeros(n,'quaternion') returns an n-by-n matrix of quaternions.

quatZeros = zeros(sz,'quaternion') returns an array of quaternions where the size vector,
sz, defines size(quatZeros).

quatZeros = zeros(sz1,...,szN,'quaternion') returns a sz1-by-...-by-szN array of
quaternions where sz1,…,szN indicates the size of each dimension.

quatZeros = zeros( ___ ,'like',prototype,'quaternion') specifies the underlying class of
the returned quaternion array to be the same as the underlying class of the quaternion prototype.

Examples

Quaternion Scalar Zero

Create a quaternion scalar zero.

quatZeros = zeros('quaternion')

quatZeros = quaternion
     0 + 0i + 0j + 0k

Square Matrix of Quaternions

Create an n-by-n array of quaternion zeros.

n = 3;
quatZeros = zeros(n,'quaternion')

quatZeros = 3x3 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k

Multidimensional Array of Quaternion Zeros

Create a multidimensional array of quaternion zeros by defining array dimensions in order. In this
example, you create a 3-by-1-by-2 array. You can specify dimensions using a row vector or comma-
separated integers.

Specify the dimensions using a row vector and display the results:

dims = [3,1,2];
quatZerosSyntax1 = zeros(dims,'quaternion')

quatZerosSyntax1 = 3x1x2 quaternion array
quatZerosSyntax1(:,:,1) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

quatZerosSyntax1(:,:,2) = 

     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k

Specify the dimensions using comma-separated integers, and then verify the equivalence of the two
syntaxes:

quatZerosSyntax2 = zeros(3,1,2,'quaternion');
isequal(quatZerosSyntax1,quatZerosSyntax2)

ans = logical
   1

Underlying Class of Quaternion Zeros

A quaternion is a four-part hyper-complex number used in three-dimensional representations. You can
specify the underlying data type of the parts as single or double. The default is double.

Create a quaternion array of zeros with the underlying data type set to single.

quatZeros = zeros(2,'like',single(1),'quaternion')

quatZeros = 2x2 quaternion array
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
     0 + 0i + 0j + 0k     0 + 0i + 0j + 0k
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Verify the underlying class using the classUnderlying function.

classUnderlying(quatZeros)

ans = 
'single'

Input Arguments
n — Size of square quaternion matrix
integer value

Size of square quaternion matrix, specified as an integer value. If n is 0 or negative, then quatZeros
is returned as an empty matrix.
Example: zeros(4,'quaternion') returns a 4-by-4 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

sz — Output size
row vector of integer values

Output size, specified as a row vector of integer values. Each element of sz indicates the size of the
corresponding dimension in quatZeros. If the size of any dimension is 0 or negative, then
quatZeros is returned as an empty array.
Example: zeros([1,4,2],'quaternion') returns a 1-by-4-by-2 array of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

prototype — Quaternion prototype
variable

Quaternion prototype, specified as a variable.
Example: zeros(2,'like',quat,'quaternion') returns a 2-by-2 matrix of quaternions with the
same underlying class as the prototype quaternion, quat.
Data Types: quaternion

sz1,...,szN — Size of each dimension
two or more integer values

Size of each dimension, specified as two or more integers.

• If the size of any dimension is 0, then quatZeros is returned as an empty array.
• If the size of any dimension is negative, then it is treated as 0.

Example: zeros(2,3,'quaternion') returns a 2-by-3 matrix of quaternion zeros.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
quatZeros — Quaternion zeros
scalar | vector | matrix | multidimensional array
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Quaternion zeros, returned as a quaternion or array of quaternions.

Given a quaternion of the form Q = a + bi + c j + dk, a quaternion zero is defined as
Q = 0 + 0i + 0j + 0k.
Data Types: quaternion

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
ones

Objects
quaternion
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generateIKFunction
Generate function for closed-form inverse kinematics

Syntax
ikFunction = generateIKFunction(analyticalIK,functionName)

Description
ikFunction = generateIKFunction(analyticalIK,functionName) generates a function
with a specified name, functionName, that computes the closed-form solutions for inverse
kinematics (IK) for a selected kinematic group to achieve a desired end-effector pose. To generate a
list of configurations that achieve the desired end-effector pose, use the generated function
ikFunction. The specified analyticalInverseKinematics object analyticalIK must contain
a valid kinematic group. For information on determining valid kinematic groups, see the
showdetails function.

For the syntax of the generated function, see the ikFunction output argument.

Examples

Solve Analytical Inverse Kinematics for Robot Manipulator

Generate closed-form inverse kinematics (IK) solutions for a desired end effector. Load the provided
robot model and inspect details about the feasible kinematic groups of base and end-effector bodies.
Generate a function for your desired kinematic group. Inspect the various configurations for a
specific end-effector pose.

Robot Model

Load the ABB IRB 120 robot model into the workspace. Display the model.

robot = loadrobot('abbIrb120','DataFormat','row');
show(robot);
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Analytical IK

Create the analytical IK solver. Show details for the robot model, which lists the different kinematic
groups available for closed-form analytical IK solutions. Select the second kinematic group by
clicking the Use this kinematic group link in the second row of the table.

aik = analyticalInverseKinematics(robot);
showdetails(aik)

--------------------
Robot: (8 bodies)

Index      Base Name   EE Body Name     Type                    Actions
-----      ---------   ------------     ----                    -------
    1      base_link         link_6   RRRSSS   Use this kinematic group
    2      base_link          tool0   RRRSSS   Use this kinematic group

Inspect the kinematic group, which lists the base and end-effector body names. For this robot, the
group uses the 'base_link' and 'tool0' bodies, respectively.

aik.KinematicGroup

ans = struct with fields:
               BaseName: 'base_link'
    EndEffectorBodyName: 'tool0'
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Generate Function

Generate the IK function for the selected kinematic group. Specify a name for the function, which is
generated and saved in the current directory.

generateIKFunction(aik,'robotIK');

Specify a desired end-effector position. Convert the xyz-position to a homogeneous transformation.

eePosition = [0 0.5 0.5];
eePose = trvec2tform(eePosition);
hold on
plotTransforms(eePosition,tform2quat(eePose))
hold off

Generate Configuration for IK Solution

Specify the homogeneous transformation to the generated IK function, which generates all solutions
for the desired end-effector pose. Display the first generated configuration to verify that the desired
pose has been achieved.

ikConfig = robotIK(eePose); % Uses the generated file

show(robot,ikConfig(1,:));
hold on
plotTransforms(eePosition,tform2quat(eePose))
hold off

3 Methods

3-4



Display all of the closed-form IK solutions sequentially.

figure;
numSolutions = size(ikConfig,1);

for i = 1:size(ikConfig,1)
    subplot(1,numSolutions,i)
    show(robot,ikConfig(i,:));
end
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Solve Analytical IK for Large-DOF Robot

Some manipulator robot models have large degrees-of-freedom (DOFs). To reach certain end-effector
poses, however, only six DOFs are required. Use the analyticalInverseKinematics object, which
supports six-DOF robots, to determine various valid kinematic groups for this large-DOF robot model.
Use the showdetails object function to get information about the model.

Load Robot Model and Generate IK Solver

Load the robot model into the workspace, and create an analyicalInverseKinematics object.
Use the showdetails object function to see the supported kinematic groups.

robot = loadrobot('willowgaragePR2','DataFormat','row');
aik = analyticalInverseKinematics(robot);
opts = showdetails(aik);

--------------------
Robot: (94 bodies)

Index                                          Base Name                                       EE Body Name     Type                    Actions
-----                                          ---------                                       ------------     ----                    -------
    1                                l_shoulder_pan_link                                  l_wrist_roll_link   RSSSSS   Use this kinematic group
    2                                r_shoulder_pan_link                                  r_wrist_roll_link   RSSSSS   Use this kinematic group
    3                                l_shoulder_pan_link                                l_gripper_palm_link   RSSSSS   Use this kinematic group
    4                                r_shoulder_pan_link                                r_gripper_palm_link   RSSSSS   Use this kinematic group
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    5                                l_shoulder_pan_link                                l_gripper_led_frame   RSSSSS   Use this kinematic group
    6                                l_shoulder_pan_link                 l_gripper_motor_accelerometer_link   RSSSSS   Use this kinematic group
    7                                l_shoulder_pan_link                               l_gripper_tool_frame   RSSSSS   Use this kinematic group
    8                                r_shoulder_pan_link                                r_gripper_led_frame   RSSSSS   Use this kinematic group
    9                                r_shoulder_pan_link                 r_gripper_motor_accelerometer_link   RSSSSS   Use this kinematic group
   10                                r_shoulder_pan_link                               r_gripper_tool_frame   RSSSSS   Use this kinematic group

Select a group programmically using the output of the showdetails object function, opts. The
selected group uses the left shoulder as the base with the left wrist as the end effector.

aik.KinematicGroup = opts(1).KinematicGroup;
disp(aik.KinematicGroup)

               BaseName: 'l_shoulder_pan_link'
    EndEffectorBodyName: 'l_wrist_roll_link'

Generate the IK function for the selected group.

generateIKFunction(aik,'willowRobotIK');

Solve Analytical IK

Define a target end-effector pose using a randomly-generated configuration.

rng(0);
expConfig = randomConfiguration(robot);

eeBodyName = aik.KinematicGroup.EndEffectorBodyName;
baseName = aik.KinematicGroup.BaseName;
expEEPose = getTransform(robot,expConfig,eeBodyName,baseName);

Solve for all robot configurations that achieve the defined end-effector pose using the generated IK
function. To ignore joint limits, specify false as the second input argument.

ikConfig = willowRobotIK(expEEPose,false);

To display the target end-effector pose in the world frame, get the transformation from the base of
the robot model, rather than the base of the kinematic group. Display all of the generated IK
solutions by specifying the indices for your kinematic group IK solution in the configuration vector
used with the show function.

eeWorldPose = getTransform(robot,expConfig,eeBodyName);

generatedConfig = repmat(expConfig, size(ikConfig,1), 1);
generatedConfig(:,aik.KinematicGroupConfigIdx) = ikConfig;

for i = 1:size(ikConfig,1)
    figure;
    ax = show(robot,generatedConfig(i,:));
    hold all;
    plotTransforms(tform2trvec(eeWorldPose),tform2quat(eeWorldPose),'Parent',ax);
    title(['Solution ' num2str(i)]);
end
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Input Arguments
analyticalIK — Analytical IK solver
analyticalInverseKinematics object

Analytical inverse kinematics solver, specified as an analyticalInverseKinematics object.

functionName — Name of generated function
string scalar | character vector

Name of the generated function, specified as a string scalar or character vector.
Example: "jacoIKSolver"
Data Types: char | string

Output Arguments
ikFunction — IK solver for selected kinematic group
function handle

IK solver for the selected kinematic group, returned as a function handle. The function generates
closed-form solutions and has these syntax options:

robotConfig = ikFunction(eeTransform)
robotConfig = ikFunction(eeTransform,enforceJointLimits)

 generateIKFunction
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robotConfig = ikFunction(eeTransform,enforceJointLimits,sortByDistance)
robotConfig = ikFunction(eeTransform,enforceJointLimits,sortByDistance,referenceConfig)

eeTransform — Desired end-effector pose
4-by-4 homogeneous transformation matrix

Desired end-effector pose, specified as a 4-by-4 homogeneous transformation matrix. To generate a
transformation matrix from an xyz-position and quaternion orientation, use the trvec2tform and
quat2tform functions on the respective coordinates and multiply the resulting matrices.

tform1 = trvec2tform([x y z]);
tform2 = quat2tform([qw qx qy qz]);
eeTransform = tform1*tform2;

Data Types: single | double

enforceJointLimits — Enforce joint limits of rigid body tree model
1 (true) | 0 (false)

Enforce joint limits of the rigid body tree model, specified as a logical, 1 (true or 0 (false). When
set to false, the solver ignores the joint limits of the robot model in the RigidBodyTree property of
the analyticalInverseKinematics object.
Data Types: logical

sortByDistance — Sort configurations based on distance from desired pose
1 (true) | 0 (false)

Sort configurations based on distance from desired pose, specified as a logical, 1 (true or 0 (false).
Data Types: logical

referenceConfig — Reference configuration for IK solution
n-element vector

Reference configuration for the IK solution, specified as an n-element vector, where n is the number
of nonfixed joints in the rigid body tree robot model. Each element corresponds to a joint position as
either a rotation angle in radians for revolute joints or a linear distance in meters for prismatic joints.
Data Types: single | double

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The analyticalInverseKinematics object only supports code generation for the function created
by calling the generateIKFunction. Use the analyticalInverseKinematics object to modify
parameters and setup the solver. Then, use generateIKFunction to create your custom IK function
for your robot model. Call codegen on the output ikFunction that is generated.
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See Also
Objects
analyticalInverseKinematics | inverseKinematics | generalizedInverseKinematics |
rigidBodyTree

Functions
loadrobot | importrobot | showdetails
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showdetails
Display overview of available kinematic groups

Syntax
kinGroupDetails = showdetails(analyticalIK)

Description
kinGroupDetails = showdetails(analyticalIK) displays an overview of all the kinematic
group combinations available for the rigidBodyTree object associated with the analytical inverse
kinematics (IK) solver. Each kinematic group contains body names for both a base and end effector
that are valid for closed-form solutions to analytical IK.

To use a specific kinematic group for your object, click the corresponding Use this kinematic group
link in the output table. This link updates the KinematicGroup and KinematicGroupType properties of
the analyticalInverseKinematics object.

Examples

Solve Analytical IK for Large-DOF Robot

Some manipulator robot models have large degrees-of-freedom (DOFs). To reach certain end-effector
poses, however, only six DOFs are required. Use the analyticalInverseKinematics object, which
supports six-DOF robots, to determine various valid kinematic groups for this large-DOF robot model.
Use the showdetails object function to get information about the model.

Load Robot Model and Generate IK Solver

Load the robot model into the workspace, and create an analyicalInverseKinematics object.
Use the showdetails object function to see the supported kinematic groups.

robot = loadrobot('willowgaragePR2','DataFormat','row');
aik = analyticalInverseKinematics(robot);
opts = showdetails(aik);

--------------------
Robot: (94 bodies)

Index                                          Base Name                                       EE Body Name     Type                    Actions
-----                                          ---------                                       ------------     ----                    -------
    1                                l_shoulder_pan_link                                  l_wrist_roll_link   RSSSSS   Use this kinematic group
    2                                r_shoulder_pan_link                                  r_wrist_roll_link   RSSSSS   Use this kinematic group
    3                                l_shoulder_pan_link                                l_gripper_palm_link   RSSSSS   Use this kinematic group
    4                                r_shoulder_pan_link                                r_gripper_palm_link   RSSSSS   Use this kinematic group
    5                                l_shoulder_pan_link                                l_gripper_led_frame   RSSSSS   Use this kinematic group
    6                                l_shoulder_pan_link                 l_gripper_motor_accelerometer_link   RSSSSS   Use this kinematic group
    7                                l_shoulder_pan_link                               l_gripper_tool_frame   RSSSSS   Use this kinematic group
    8                                r_shoulder_pan_link                                r_gripper_led_frame   RSSSSS   Use this kinematic group
    9                                r_shoulder_pan_link                 r_gripper_motor_accelerometer_link   RSSSSS   Use this kinematic group
   10                                r_shoulder_pan_link                               r_gripper_tool_frame   RSSSSS   Use this kinematic group
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Select a group programmically using the output of the showdetails object function, opts. The
selected group uses the left shoulder as the base with the left wrist as the end effector.

aik.KinematicGroup = opts(1).KinematicGroup;
disp(aik.KinematicGroup)

               BaseName: 'l_shoulder_pan_link'
    EndEffectorBodyName: 'l_wrist_roll_link'

Generate the IK function for the selected group.

generateIKFunction(aik,'willowRobotIK');

Solve Analytical IK

Define a target end-effector pose using a randomly-generated configuration.

rng(0);
expConfig = randomConfiguration(robot);

eeBodyName = aik.KinematicGroup.EndEffectorBodyName;
baseName = aik.KinematicGroup.BaseName;
expEEPose = getTransform(robot,expConfig,eeBodyName,baseName);

Solve for all robot configurations that achieve the defined end-effector pose using the generated IK
function. To ignore joint limits, specify false as the second input argument.

ikConfig = willowRobotIK(expEEPose,false);

To display the target end-effector pose in the world frame, get the transformation from the base of
the robot model, rather than the base of the kinematic group. Display all of the generated IK
solutions by specifying the indices for your kinematic group IK solution in the configuration vector
used with the show function.

eeWorldPose = getTransform(robot,expConfig,eeBodyName);

generatedConfig = repmat(expConfig, size(ikConfig,1), 1);
generatedConfig(:,aik.KinematicGroupConfigIdx) = ikConfig;

for i = 1:size(ikConfig,1)
    figure;
    ax = show(robot,generatedConfig(i,:));
    hold all;
    plotTransforms(tform2trvec(eeWorldPose),tform2quat(eeWorldPose),'Parent',ax);
    title(['Solution ' num2str(i)]);
end
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Input Arguments
analyticalIK — Analytical IK solver
analyticalInverseKinematics object

Analytical inverse kinematics solver, specified as an analyticalInverseKinematics object.

Output Arguments
kinGroupDetails — Kinematic group classification details
structure

Kinematic group classification details, returned as a structure with these fields:

• KinematicGroup — A structure that contains the base and end-effector body names of the
kinematic group in the fields BaseName and EndEffectorBodyName, respectively.

• Type — A kinematic group classification type with the same format as that KinematicGroupType
property of the analyticalInverseKinematics object.

• IsIntersectionAxesMidpoint — An n-element vector indicating whether each specific joint
axis intersects with the preceding or following non-fixed joint. n is the number of non-fixed joints
in the kinematic group.

• MidpointAxisIntersections — A 2-by-3-by-n array that stores the joint intersection points
where each element of the third dimension corresponds to a single joint .For each channel of n,
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the first row is the intersection point from the preceding joint to the joint represented by that
channel. The second row is the intersection point from the joint to the following joint. The array
gives intersection points as [x y z] coordinates relative to the base.

Version History
Introduced in R2020b

See Also
Objects
analyticalInverseKinematics | inverseKinematics | generalizedInverseKinematics |
rigidBodyTree

Functions
loadrobot | importrobot | generateIKFunction
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checkOccupancy
Check if locations are free or occupied

Syntax
occVal = checkOccupancy(map,xy)
occVal = checkOccupancy(map,xy,"local")
occVal = checkOccupancy(map,ij,"grid")
[occVal,validPts] = checkOccupancy( ___ )

occMatrix = checkOccupancy(map)
occMatrix = checkOccupancy(map,bottomLeft,matSize)
occMatrix = checkOccupancy(map,bottomLeft,matSize,"local")
occMatrix = checkOccupancy(map,topLeft,matSize,"grid")

Description
occVal = checkOccupancy(map,xy) returns an array of occupancy values at the xy locations in
the world frame. Obstacle-free cells return 0, occupied cells return 1. Unknown locations, including
outside the map, return -1.

occVal = checkOccupancy(map,xy,"local") returns an array of occupancy values at the xy
locations in the local frame. The local frame is based on the LocalOriginInWorld property of the
map.

occVal = checkOccupancy(map,ij,"grid") specifies ij grid cell indices instead of xy
locations. Grid indices start at (1,1) from the top left corner.

[occVal,validPts] = checkOccupancy( ___ ) also outputs an n-element vector of logical
values indicating whether input coordinates are within the map limits.

occMatrix = checkOccupancy(map) returns a matrix that contains the occupancy status of each
location. Obstacle-free cells return 0, occupied cells return 1. Unknown locations, including outside
the map, return -1.

occMatrix = checkOccupancy(map,bottomLeft,matSize) returns a matrix of occupancy
values by specifying the bottom-left corner location in world coordinates and the matrix size in
meters.

occMatrix = checkOccupancy(map,bottomLeft,matSize,"local") returns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates and the matrix
size in meters.

occMatrix = checkOccupancy(map,topLeft,matSize,"grid") returns a matrix of occupancy
values by specifying the top-left cell index in grid coordinates and the matrix size.

Examples
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Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free thresholds
of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = zeros(20,20);
p(11:20,11:20) = ones(10,10);
map = binaryOccupancyMap(p,10);
show(map)

Get the occupancy of different locations and check their occupancy statuses. The occupancy status
returns 0 for free space and 1 for occupied space. Unknown values return –1.

pocc = getOccupancy(map,[1.5 1]);
occupied = checkOccupancy(map,[1.5 1]);
pocc2 = getOccupancy(map,[5 5],'grid');

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.
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xy — Coordinates in the map
n-by-2 matrix

Coordinates in the map, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
coordinates. Coordinates can be world or local coordinates depending on the syntax.
Data Types: double

ij — Grid locations in the map
n-by-2 matrix

Grid locations in the map, specified as an n-by-2 matrix of [i j] pairs, where n is the number of
locations. Grid locations are given as [row col].
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength], or [gridRow
gridCol]. Size is in world, local, or grid coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
occVal — Occupancy values
n-by-1 column vector

Occupancy values, returned as an n-by-1 column vector equal in length to xy or ij input. Occupancy
values can be obstacle free (0), occupied (1), or unknown (-1).

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

occMatrix — Matrix of occupancy values
matrix
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Matrix of occupancy values, returned as matrix with size equal to matSize or the size of your map.
Occupancy values can be obstacle free (0), occupied (1), or unknown (-1).

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap
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getOccupancy
Get occupancy value of locations

Syntax
occVal = getOccupancy(map,xy)
occVal = getOccupancy(map,xy,"local")
occVal = getOccupancy(map,ij,"grid")
[occVal,validPts] = getOccupancy( ___ )

occMatrix = getOccupancy(map)
occMatrix = getOccupancy(map,bottomLeft,matSize)
occMatrix = getOccupancy(map,bottomLeft,matSize,"local")
occMatrix = getOccupancy(map,topLeft,matSize,"grid")

Description
occVal = getOccupancy(map,xy) returns an array of occupancy values at the xy locations in the
world frame. Unknown locations, including outside the map, return map.DefaultValue.

occVal = getOccupancy(map,xy,"local") returns an array of occupancy values at the xy
locations in the local frame.

occVal = getOccupancy(map,ij,"grid") specifies ij grid cell indices instead of xy locations.

[occVal,validPts] = getOccupancy( ___ ) additionally outputs an n-element vector of logical
values indicating whether input coordinates are within the map limits.

occMatrix = getOccupancy(map) returns all occupancy values in the map as a matrix.

occMatrix = getOccupancy(map,bottomLeft,matSize) returns a matrix of occupancy values
by specifying the bottom-left corner location in world coordinates and the matrix size in meters.

occMatrix = getOccupancy(map,bottomLeft,matSize,"local") returns a matrix of
occupancy values by specifying the bottom-left corner location in local coordinates and the matrix
size in meters.

occMatrix = getOccupancy(map,topLeft,matSize,"grid") returns a matrix of occupancy
values by specifying the top-left cell index in grid indices and the matrix size.

Examples

Insert Laser Scans into Binary Occupancy Map

Create an empty binary occupancy grid map.

map = binaryOccupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.
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pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)

Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = logical
   1
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Get Occupancy Values and Check Occupancy Status

Access occupancy values and check their occupancy status based on the occupied and free thresholds
of the occupancyMap object.

Create a matrix and populate it with values. Use this matrix to create an occupancy map.

p = zeros(20,20);
p(11:20,11:20) = ones(10,10);
map = binaryOccupancyMap(p,10);
show(map)

Get the occupancy of different locations and check their occupancy statuses. The occupancy status
returns 0 for free space and 1 for occupied space. Unknown values return –1.

pocc = getOccupancy(map,[1.5 1]);
occupied = checkOccupancy(map,[1.5 1]);
pocc2 = getOccupancy(map,[5 5],'grid');

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.
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xy — Coordinates in the map
n-by-2 matrix

Coordinates in the map, specified as an n-by-2 matrix of [x y] pairs, where n is the number of
coordinates. Coordinates can be world or local coordinates depending on the syntax.
Data Types: double

ij — Grid locations in the map
n-by-2 matrix

Grid locations in the map, specified as an n-by-2 matrix of [i j] pairs, where n is the number of
locations. Grid locations are given as [row col].
Data Types: double

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

matSize — Output matrix size
two-element vector | [xLength yLength] | [gridRow gridCol]

Output matrix size, specified as a two-element vector, [xLength yLength] or [gridRow
gridCol]. The size is in world coordinates, local coordinates, or grid indices based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
occVal — Occupancy values
n-by-1 column vector

Occupancy values, returned as an n-by-1 column vector equal in length to xy or ij. Occupancy values
can be obstacle free (0) or occupied (1).

validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

occMatrix — Matrix of occupancy values
matrix

Matrix of occupancy values, returned as matrix with size equal to matSize or the size of map.
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | setOccupancy

Topics
“Occupancy Grids”
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grid2local
Convert grid indices to local coordinates

Syntax
xy = grid2local(map,ij)

Description
xy = grid2local(map,ij) converts a [row col] array of grid indices, ij, to an array of local
coordinates, xy.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.

Output Arguments
xy — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of local
coordinates.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | world2grid
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grid2world
Convert grid indices to world coordinates

Syntax
xy = grid2world(map,ij)

Description
xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an array of world
coordinates, xy.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.

Output Arguments
xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | world2grid | grid2local
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inflate
Inflate each occupied location

Syntax
inflate(map,radius)
inflate(map,gridradius,'grid')

Description
inflate(map,radius) inflates each occupied position of the map by the radius given in meters.
radius is rounded up to the nearest cell equivalent based on the resolution of the map. Every cell
within the radius is set to true (1).

inflate(map,gridradius,'grid') inflates each occupied position by the radius given in number
of cells.

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.

x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)
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Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)

 inflate

3-41



Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

radius — Dimension the defines how much to inflate occupied locations
scalar

Dimension that defines how much to inflate occupied locations, specified as a scalar. radius is
rounded up to the nearest cell value.
Data Types: double

gridradius — Dimension the defines how much to inflate occupied locations
positive scalar

Dimension that defines how much to inflate occupied locations, specified as a positive scalar.
gridradius is the number of cells to inflate the occupied locations.
Data Types: double
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Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | setOccupancy

Topics
“Occupancy Grids”
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insertRay
Insert ray from laser scan observation

Syntax
insertRay(map,pose,scan,maxrange)
insertRay(map,pose,ranges,angles,maxrange)
insertRay(map,startpt,endpoints)

Description
insertRay(map,pose,scan,maxrange) inserts one or more lidar scan sensor observations in the
occupancy grid, map, using the input lidarScan object, scan, to get ray endpoints. End point
locations are updated with an occupied value. If the ranges are above maxrange, the ray endpoints
are considered free space. All other points along the ray are treated as obstacle-free.

insertRay(map,pose,ranges,angles,maxrange) specifies the range readings as vectors
defined by the input ranges and angles.

insertRay(map,startpt,endpoints) inserts observations between the line segments from the
start point to the end points. The endpoints are updated are occupied space and other points along
the line segments are updated as free space.

Examples

Insert Laser Scans into Binary Occupancy Map

Create an empty binary occupancy grid map.

map = binaryOccupancyMap(10,10,20);

Input pose of the vehicle, ranges, angles, and the maximum range of the laser scan.

pose = [5,5,0];
ranges = 3*ones(100,1);
angles = linspace(-pi/2,pi/2,100);
maxrange = 20;

Create a lidarScan object with the specified ranges and angles.

scan = lidarScan(ranges,angles);

Insert the laser scan data into the occupancy map.

insertRay(map,pose,scan,maxrange);

Show the map to see the results of inserting the laser scan.

show(map)
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Check the occupancy of the spot directly in front of the vehicle.

getOccupancy(map,[8 5])

ans = logical
   1

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

pose — Position and orientation of vehicle
three-element vector

Position and orientation of vehicle, specified as an [x y theta] vector. The vehicle pose is an x and
y position with angular orientation theta (in radians) measured from the x-axis.

scan — Lidar scan readings
lidarScan object
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Lidar scan readings, specified as a lidarScan object.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector of elements measured in meters. These range
values are distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

Angle values from scan data, specified as a vector of elements measured in radians. These angle
values correspond to the given ranges. The vector must be the same length as the corresponding
ranges vector.

maxrange — Maximum range of sensor
scalar

Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

startpt — Start point for rays
two-element vector

Start point for rays, specified as a two-element vector, [x y], in the world coordinate frame. All rays
are line segments that originate at this point.

endpoints — Endpoints for rays
n-by-2 matrix

Endpoints for rays, specified as an n-by-2 matrix of [x y] pairs in the world coordinate frame, where
n is the length of ranges or angles. All rays are line segments that originate at startpt.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
occupancyMap | binaryOccupancyMap | lidarScan | lidarScan

Topics
“Occupancy Grids”
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local2grid
Convert local coordinates to grid indices

Syntax
ij = local2grid(map,xy)

Description
ij = local2grid(map,xy) converts an array of local coordinates, xy, to an array of grid indices,
ij in [row col] format.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of local
coordinates.
Data Types: double

Output Arguments
ij — Grid positions
n-by-2 matrix

Grid positions, returned as an n-by-2 matrix of [i j] pairs in [row col] format, where n is the
number of grid positions. The grid cell locations are counted from the top left corner of the grid.
Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap | grid2local | grid2local

3 Methods

3-48



Topics
“Occupancy Grids”
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local2world
Convert local coordinates to world coordinates

Syntax
xyWorld = local2world(map,xy)

Description
xyWorld = local2world(map,xy) converts an array of local coordinates to world coordinates.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

xy — Local coordinates
n-by-2 matrix

Local coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of local
coordinates.
Data Types: double

Output Arguments
xyWorld — World coordinates
n-by-2 matrix

World coordinates, specified as an n-by-2 matrix of [x y] pairs, where n is the number of world
coordinates.
Data Types: double

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | grid2world | world2local | occupancyMap
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Topics
“Occupancy Grids”
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move
Move map in world frame

Syntax
move(map,moveValue)
move(map,moveValue,Name,Value)

Description
move(map,moveValue) moves the local origin of the map to an absolute location, moveValue, in
the world frame, and updates the map limits. Move values are truncated based on the resolution of
the map. By default, newly revealed regions are set to map.DefaultValue.

move(map,moveValue,Name,Value) specifies additional options specified by one or more name-
value pair arguments.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world map. This
process emulates a vehicle driving in an environment and getting updates on obstacles in the new
areas.

Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)
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Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference between points
by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
    end
end
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

moveValue — Local map origin move value
[x y] vector

Local map origin move value, specified as an [x y] vector. By default, the value is an absolute
location to move the local origin to in the world frame. Use the MoveType name-value pair to specify
a relative move.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'MoveType','relative'
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MoveType — Type of move
'absolute' (default) | 'relative'

Type of move, specified as 'absolute' or 'relative'. For relative moves, specify a relative [x y]
vector for moveValue based on your current local frame.

FillValue — Fill value for revealed locations
0 (default) | 1

Fill value for revealed locations because of the shifted map limits, specified as 0 or 1.

SyncWith — Secondary map to sync with
binaryOccupancyMap object

Secondary map to sync with, specified as a binaryOccupancyMap object. Any revealed locations
based on the move are updated with values in this map using the world coordinates.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap | occupancyMatrix
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occupancyMatrix
Convert occupancy grid to matrix

Syntax
mat = occupancyMatrix(map)

Description
mat = occupancyMatrix(map) returns occupancy values stored in the occupancy grid object as a
matrix.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

Output Arguments
mat — Occupancy values
matrix

Occupancy values, returned as an h-by-w matrix, where h and w are defined by the two elements of
the GridSize property of the occupancy grid object.
Data Types: double

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids”
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raycast
Compute cell indices along a ray

Syntax
[endpoints,midpoints] = raycast(map,pose,range,angle)
[endpoints,midpoints] = raycast(map,p1,p2)

Description
[endpoints,midpoints] = raycast(map,pose,range,angle) returns cell indices of the
specified map for all cells traversed by a ray originating from the specified pose at the specified
angle and range values. endpoints contains all indices touched by the end of the ray, with all
other points included in midpoints.

[endpoints,midpoints] = raycast(map,p1,p2) returns the cell indices of the line segment
between the two specified points.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

pose — Position and orientation of sensor
three-element vector

Position and orientation of sensor, specified as an [x y theta] vector. The sensor pose is an x and y
position with angular orientation theta (in radians) measured from the x-axis.

range — Range of ray
scalar

Range of ray, specified as a scalar in meters.

angle — Angle of ray
scalar

Angle of ray, specified as a scalar in radians. The angle value is for the corresponding range.

p1 — Starting point of ray
two-element vector

Starting point of ray, specified as an [x y] two-element vector. Points are defined with respect to the
world-frame.

p2 — Endpoint of ray
two-element vector
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Endpoint of ray, specified as an [x y] two-element vector. Points are defined with respect to the
world-frame.

Output Arguments
endpoints — Endpoint grid indices
n-by-2 matrix

Endpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of grid indices.
The endpoints are where the range value hits at the specified angle. Multiple indices are returned
when the endpoint lies on the boundary of multiple cells.

midpoints — Midpoint grid indices
n-by-2 matrix

Midpoint indices, returned as an n-by-2 matrix of [i j] pairs, where n is the number of grid indices.
This argument includes all grid indices the ray intersects, excluding the endpoint.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | insertRay | occupancyMap
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rayIntersection
Find intersection points of rays and occupied map cells

Syntax
intersectionPts = rayIntersection(map,pose,angles,maxrange)

Description
intersectionPts = rayIntersection(map,pose,angles,maxrange) returns intersection
points of rays and occupied cells in the specified map. Rays emanate from the specified pose and
angles. Intersection points are returned in the world coordinate frame. If there is no intersection up
to the specified maxrange, [NaN NaN] is returned.

Examples

Get Ray Intersection Points on Occupancy Map

Create a binary occupancy grid map. Add obstacles and inflate them. A lower resolution map is used
to illustrate the importance of the size of your grid cells. Show the map.

map = binaryOccupancyMap(10,10,2);
obstacles = [4 10; 3 5; 7 7];
setOccupancy(map,obstacles,ones(length(obstacles),1))
inflate(map,0.25)
show(map)

 rayIntersection

3-61



Find the intersection points of occupied cells and rays that emit from the given vehicle pose. Specify
the max range and angles for these rays. The last ray does not intersect with an obstacle within the
max range, so it has no collision point.

maxrange = 6;
angles = [pi/4,-pi/4,0,-pi/8];
vehiclePose = [4,4,pi/2];
intsectionPts = rayIntersection(map,vehiclePose,angles,maxrange)

intsectionPts = 4×2

    3.5000    4.5000
    6.0000    6.0000
    4.0000    9.0000
       NaN       NaN

Plot the intersection points and rays from the pose.

hold on
plot(intsectionPts(:,1),intsectionPts(:,2),'*r') % Intersection points
plot(vehiclePose(1),vehiclePose(2),'ob') % Vehicle pose
for i = 1:3
    plot([vehiclePose(1),intsectionPts(i,1)],...
        [vehiclePose(2),intsectionPts(i,2)],'-b') % Plot intersecting rays
end
plot([vehiclePose(1),vehiclePose(1)-6*sin(angles(4))],...
    [vehiclePose(2),vehiclePose(2)+6*cos(angles(4))],'-b') % No intersection ray
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

pose — Position and orientation of sensor
three-element vector

Position and orientation of the sensor, specified as an [x y theta] vector. The sensor pose is an x
and y position with angular orientation theta (in radians) measured from the x-axis.

angles — Ray angles emanating from sensor
vector

Ray angles emanating from the sensor, specified as a vector with elements in radians. These angles
are relative to the specified sensor pose.

maxrange — Maximum range of sensor
scalar
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Maximum range of laser range sensor, specified as a scalar in meters. Range values greater than or
equal to maxrange are considered free along the whole length of the ray, up to maxrange.

Output Arguments
intersectionPts — Intersection points
n-by-2 matrix

Intersection points, returned as n-by-2 matrix of [x y] pairs in the world coordinate frame, where n
is the length of angles.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap

Topics
“Occupancy Grids”
“Occupancy Grids”
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setOccupancy
Set occupancy value of locations

Syntax
setOccupancy(map,xy,occval)
setOccupancy(map,xy,occval,"local")
setOccupancy(map,ij,occval,"grid")
validPts = setOccupancy( ___ )

setOccupancy(map,bottomLeft,inputMatrix)
setOccupancy(map,bottomLeft,inputMatrix,"local")
setOccupancy(map,topLeft,inputMatrix,"grid")

Description
setOccupancy(map,xy,occval) assigns occupancy values, occval, to the input array of world
coordinates, xy in the occupancy grid, map. Each row of the array, xy, is a point in the world and is
represented as an [x y] coordinate pair. occval is either a scalar or a single column array of the
same length as xy . An occupied location is represented as true (1), and a free location is
represented as false (0).

setOccupancy(map,xy,occval,"local") assigns occupancy values, occval, to the input array
of local coordinates, xy, as local coordinates.

setOccupancy(map,ij,occval,"grid") assigns occupancy values, occval, to the input array of
grid indices, ij, as [rows cols].

validPts = setOccupancy( ___ ) outputs an n-element vector of logical values indicating
whether input coordinates are within the map limits.

setOccupancy(map,bottomLeft,inputMatrix) assigns a matrix of occupancy values by
specifying the bottom-left corner location in world coordinates.

setOccupancy(map,bottomLeft,inputMatrix,"local") assigns a matrix of occupancy values
by specifying the bottom-left corner location in local coordinates.

setOccupancy(map,topLeft,inputMatrix,"grid") assigns a matrix of occupancy values by
specifying the top-left cell index in grid indices and the matrix size.

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

map = binaryOccupancyMap(10,10,10);

Set occupancy of world locations and show map.
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x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))
figure
show(map)

Inflate occupied locations by a given radius.

inflate(map, 0.5)
figure
show(map)
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Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')
figure
show(map)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the robot. The object contains a matrix grid with binary values indicating obstacles as
true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.
Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n
is the number of grid positions.
Data Types: double
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occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical array, where n
is the same n in either xy or ij. Values are given between 0 and 1 inclusively.

inputMatrix — Occupancy values
matrix

Occupancy values, specified as a matrix. Values are given between 0 and 1 inclusively.

bottomLeft — Location of output matrix in world or local
two-element vector | [xCoord yCoord]

Location of bottom left corner of output matrix in world or local coordinates, specified as a two-
element vector, [xCoord yCoord]. Location is in world or local coordinates based on syntax.
Data Types: double

topLeft — Location of grid
two-element vector | [iCoord jCoord]

Location of top left corner of grid, specified as a two-element vector, [iCoord jCoord].
Data Types: double

Output Arguments
validPts — Valid map locations
n-by-1 column vector

Valid map locations, returned as an n-by-1 column vector equal in length to xy or ij. Locations inside
the map return a value of 1. Locations outside the map limits return a value of 0.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | getOccupancy | occupancyMap

 setOccupancy

3-69



show
Display binary occupancy map

Syntax
show(map)
show(map, "local")
show(map, "grid")
show( ___ ,Name,Value)
mapImage = show( ___ )

Description
show(map) displays the binary occupancy grid map in the current axes, with the axes labels
representing the world coordinates.

show(map, "local") displays the binary occupancy grid map in the current axes, with the axes
labels representing the local coordinates instead of world coordinates.

show(map, "grid") displays the binary occupancy grid map in the current axes, with the axes
labels representing the grid coordinates.

show( ___ ,Name,Value) specifies additional options specified by one or more name-value pair
arguments.

mapImage = show( ___ ) returns the handle to the image object created by show.

Examples

Move Local Map and Sync with World Map

This example shows how to move a local egocentric map and sync it with a larger world map. This
process emulates a vehicle driving in an environment and getting updates on obstacles in the new
areas.

Load example maps. Create a binary occupancy map from the complexMap.

load exampleMaps.mat
map = binaryOccupancyMap(complexMap);
show(map)
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Create a smaller local map.

mapLocal = binaryOccupancyMap(complexMap(end-20:end,1:20));
show(mapLocal)
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Follow a path planned in the world map and update the local map as you move your local frame.

Specify path locations and plot on the map.

path = [5 2
        8 2
        8 8
        30 8];
show(map)
hold on
plot(path(:,1),path(:,2))
hold off
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Create a loop for moving between points by the map resolution. Divide the difference between points
by the map resolution to see how many incremental moves you can make.

for i = 1:length(path)-1
    moveAmount = (path(i+1,:)-path(i,:))/map.Resolution;
    for j = 1:abs(moveAmount(1)+moveAmount(2))
        moveValue = sign(moveAmount).*map.Resolution;
        move(mapLocal,moveValue, ...
            "MoveType","relative","SyncWith",map)
 
        show(mapLocal)
        drawnow limitrate
        pause(0.2)
    end
end
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object. This object represents the
environment of the vehicle.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Parent',axHandle

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as either an Axes or UIAxesobject. See axes or uiaxes.

FastUpdate — Update existing map plot
0 (default) | 1
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Update existing map plot, specified as 0 or 1. If you previously plotted your map on your figure, set to
1 for a faster update to the figure. This is useful for updating the figure in a loop for fast animations.

Version History
Introduced in R2015a

See Also
binaryOccupancyMap | occupancyMap
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syncWith
Sync map with overlapping map

Syntax
mat = syncWith(map,sourcemap)

Description
mat = syncWith(map,sourcemap) updates map with data from another binaryOccupancyMap
object, sourcemap. Locations in map that are also found in sourcemap are updated. All other cells in
map are set to map.DefaultValue.

Examples

Sync Map With an Overlapping Map

This example shows how to sync two overlapping maps using the syncWith function.

2-D occupancy maps are used to represent and visualize robot workspaces. In this example 2-D
occupancy maps are created using existing map grid values stored inside exampleMaps.mat.

load('exampleMaps.mat');

Create and display a new empty 2-D occupancy map object using binaryOccupancyMap function.

map1 = binaryOccupancyMap(70,70); 
show(map1) 
title('New Map')
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Create and display 2-D occupancy map using the map grid values stored in complexMap.

map2 = binaryOccupancyMap(complexMap); 
show(map2)
title('Complex Map')

 syncWith

3-77



Now update map1 with map2 using the syncWith function.

syncWith(map1,map2);
show(map1)
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Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

sourcemap — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | occupancyMap
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Topics
“Occupancy Grids”
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world2grid
Convert world coordinates to grid indices

Syntax
ij = world2grid(map,xy)

Description
ij = world2grid(map,xy) converts an array of world coordinates, xy, to a [rows cols] array of
grid indices, ij.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.

Output Arguments
ij — Grid indices
n-by-2 vertical array

Grid indices, specified as an n-by-2 vertical array of [i j] pairs in [rows cols] format, where n is
the number of grid positions.

Version History
Introduced in R2015a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | grid2world
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world2local
Convert world coordinates to local coordinates

Syntax
xyLocal = world2local(map,xy)

Description
xyLocal = world2local(map,xy) converts an array of world coordinates to local coordinates.

Input Arguments
map — Map representation
binaryOccupancyMap object

Map representation, specified as a binaryOccupancyMap object.

xy — World coordinates
n-by-2 vertical array

World coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of
world coordinates.

Output Arguments
xyLocal — Local coordinates
n-by-2 vertical array

Local coordinates, specified as an n-by-2 vertical array of [x y] pairs, where n is the number of local
coordinates.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
binaryOccupancyMap | grid2world | local2world
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addCapsule
Add collision capsule to rigid body

Syntax
addCapsule(capapprox,bodyname,parameters,pose)

Description
addCapsule(capapprox,bodyname,parameters,pose) adds a collision capsule at the next index
of the rigid body bodyname with the specified pose pose and geometry parameters parameters.

Examples

Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);

 addCapsule

3-83



Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

3 Methods

3-84



Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Input Arguments
capapprox — Capsule approximation of rigid body tree
capsuleApproximation object

Capsule approximation of a rigid body tree, specified as a capsuleApproximation object.

bodyname — Name of rigid body to add capsule to
string scalar | character vector

Name of the rigid body to add the capsule to, specified as a string scalar or character vector. The
rigid body must exist in the rigidBodyTree object of the RigidBodyTree property of capapprox.
Example: "EndEffectorTool"
Data Types: char | string

parameters — Radius and length of added collision capsule
two-element row vector

Radius and length of the added collision capsule, specified as a two-element row vector of the form
[radius length], in meters. The radius is the radius of the spherical ends of the capsule, and the length
is the length of the central line segment of the capsule.
Example: [1 2]
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pose — Pose for added collision capsule
4-by-4 matrix

Pose for the added collision capsule, specified as a 4-by-4 homogeneous transformation matrix
defined with respect to the frame of the rigid body bodyname.
Example: eye(4)

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
capsuleApproximation

Functions
removeCapsule | show | getCapsules | updatePose | updateGeometry
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getCapsules
Get collision capsules of rigid body

Syntax
[capsules,fitInfo] = getCapsules(capapprox,bodyname)
[capsules,fitInfo] = getCapsules( ___ ,maxcollisoncapsules)

Description
[capsules,fitInfo] = getCapsules(capapprox,bodyname) gets the collision capsules of the
specified body bodyname of the rigid body tree in the capsule approximation. The function also
returns the fit information of the collision capsules.

[capsules,fitInfo] = getCapsules( ___ ,maxcollisoncapsules) specifies the maximum
number of capsules to return during code generation maxcollisoncapsules, in addition to the
input arguments from the previous syntax. If you specify maxcollisoncapsules during MATLAB
execution, the function ignores it.

Examples

Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);
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Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Input Arguments
capapprox — Capsule approximation of rigid body tree
capsuleApproximation object

Capsule approximation of a rigid body tree, specified as a capsuleApproximation object.

bodyname — Name of rigid body to get capsules from
string scalar | character vector

Name of the rigid body to get capsules from, specified as a string scalar or character vector. The rigid
body must exist in the rigidBodyTree object of the RigidBodyTree property of capsapprox.
Example: "EndEffectorTool"
Data Types: char | string

maxcollisoncapsules — Maximum number of collision capsules to return during code
generation
10 (default) | positive integer

Maximum number of collision capsules to return from the specified rigid body during code
generation, specified as a positive integer.

If you specify maxcollisoncapsules during MATLAB execution, the function ignores it.
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Output Arguments
capsules — Collision capsules of rigid body
cell array

Collision capsules of the rigid body, returned as a cell array of collisionCapsule objects.

fitInfo — Fit information of collision capsules
array of structures

Fit information of the collision capsules, returned as an M-element array of structures, where M is
the total number of capsules of the rigid body. Each element of fitInfo contains the fit information
for the collision capsule at the corresponding index. Each structure contains the Residual field,
returned as an N-element vector, where N is the total number of points of the collision geometry.
Each element of the vector specifies the residual of a point of the collision geometry as:

(ocg− lcc) + rcc

where:

• ocg is the origin of the fitted collision object.
• lcc is the point of the central line of the collision capsule closest to ocg.
• rcc is the radius of the collision capsule.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

If the maxcollisoncapsules input argument is unspecified during code generation, the maximum
number of capsules of the rigid body returned is 10, resulting in only the capsules at indices in the
range [1, 10] being returned. If maxcollisoncapsules is specified in MATLAB execution, it is
ignored.

See Also
Objects
capsuleApproximation

Functions
addCapsule | removeCapsule | show | updatePose | updateGeometry
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removeCapsule
Remove collision capsule from rigid body

Syntax
removeCapsule(capapprox,bodyname)
removeCapsule( ___ ,idx)

Description
removeCapsule(capapprox,bodyname) removes the collision capsule at the last index of the rigid
body bodyname.

removeCapsule( ___ ,idx) removes the collision capsule at the specified index idx of the rigid
body, in addition to the input arguments from the previous syntax.

Examples

Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);
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Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));
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Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 removeCapsule
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Input Arguments
capapprox — Capsule approximation of rigid body tree
capsuleApproximation object

Capsule approximation of a rigid body tree, specified as a capsuleApproximation object.

bodyname — Name of rigid body to remove capsule from
string scalar | character vector

Name of the rigid body to remove the capsule from, specified as a string scalar or character vector.
The rigid body must exist in the rigidBodyTree object of the RigidBodyTree property of
capsapprox.
Example: "EndEffectorTool"
Data Types: char | string

idx — Index of collision capsule to remove
positive integer

Index of the collision capsule to remove, specified as a positive integer.
Example: 2
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Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
capsuleApproximation

Functions
addCapsule | show | getCapsules | updatePose | updateGeometry

 removeCapsule

3-99



show
Visualize capsule approximation of rigid body tree

Syntax
show(capapprox)
show(capapprox,config)
show(capapprox,Parent=ax)
ax = show(capapprox, ___ )

Description
show(capapprox) shows the collision capsule approximation capsapprox, superimposed on the
original collision geometries of the corresponding rigid body tree in the home configuration of the
rigid body tree.

show(capapprox,config) shows the collision capsule approximation superimposed on the original
collision geometries of the corresponding rigid body tree with the specified joint configuration
config.

show(capapprox,Parent=ax) specifies the parent axes handle ax to plot capsule-approximated
rigid body tree.

ax = show(capapprox, ___ ) returns the axes handle ax containing the capsule-approximated
rigid body tree plot.

Examples

Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);
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Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 show
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Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

3 Methods

3-102



Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 show
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Input Arguments
capapprox — Capsule approximation of rigid body tree
capsuleApproximation object

Capsule approximation of a rigid body tree, specified as a capsuleApproximation object.

config — Rigid body tree robot model configuration
n-element row vector

Rigid body tree robot model configuration, specified as an n-element row vector, in radians. n is the
number of movable joints in the rigid body tree model.
Example: [pi 0 pi/2 0 0] is a configuration for a rigid body tree with five movable joints.

ax — Parent axes graphic handle
Axes object

Parent axes graphic handle, specified as an Axes object.

Output Arguments
ax — Axes graphic handle
Axes object
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Axes graphic handle, returned as an Axes object.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
capsuleApproximation

 show
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updateGeometry
Update geometry of collision capsule of rigid body

Syntax
updateGeometry(capapprox,bodyname,parameters)
updateGeometry( ___ ,idx)

Description
updateGeometry(capapprox,bodyname,parameters) updates the geometry of the first collision
capsule of the rigid body bodyname with the new geometry parameters parameters.

updateGeometry( ___ ,idx) updates the geometry of the collision capsule at index idx of the rigid
body, in addition to the input arguments from the previous syntax.

Examples

Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);
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Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 updateGeometry
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Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

3 Methods

3-108



Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 updateGeometry
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Input Arguments
capapprox — Capsule approximation of rigid body tree
capsuleApproximation object

Capsule approximation of a rigid body tree, specified as a capsuleApproximation object.

bodyname — Name of rigid body
string scalar | character vector

Name of the rigid body, specified as a string scalar or character vector. The rigid body must exist in
the rigidBodyTree object of the RigidBodyTree property of capsapprox.
Example: "EndEffectorTool"
Data Types: char | string

idx — Index of collision capsule in rigid body
nonnegative integer

Index of the collision capsule in the rigid body, specified as a nonnegative integer.
Example: 5

parameters — Updated radius and length of added collision capsule
two-element row vector
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Updated radius and length of the collision capsule, specified as a two-element row vector of the form
[radius length], in meters. The radius is the radius of the spherical ends of the capsule, and the length
is the length of the central line segment of the capsule.
Example: [1 2]

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
capsuleApproximation

Functions
addCapsule | removeCapsule | show | getCapsules | updatePose
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updatePose
Update pose of collision capsule of rigid body

Syntax
updatePose(capapprox,bodyname,pose)
updatePose( ___ ,idx)

Description
updatePose(capapprox,bodyname,pose) updates the pose of the first collision capsule of the
rigid body bodyname with the new pose pose.

updatePose( ___ ,idx) updates the pose of the collision capsule at index idx, in addition to the
arguments from the previous syntax.

Examples

Create and Modify Capsule Approximation

Load a robot into the workspace and visualize it.

robotIRB = loadrobot("abbIrb120");
show(robotIRB);
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Create a capsule approximation of the robot, and visualize the capsule-approximated robot model.

capsIRB = capsuleApproximation(robotIRB);
figure
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 updatePose
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Use the getCapsules function to see if the end effector, "tool0", has any collision capsules.
Because tool0 is just a frame, it has no collision mesh to approximate as a collision capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool =

  1x0 empty cell array

Add a capsule to tool0, at a position 0.15 meters along the x-axis, with a radius of 0.15 and a
length of 0.

addCapsule(capsIRB,"tool0",[0.15 0],trvec2tform([0.15 0 0]))
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

3 Methods

3-114



Again check tool0 for a collision capsule, and verify the properties of the detected capsule.

capsulesTool = getCapsules(capsIRB,"tool0")

capsulesTool = 1x1 cell array
    {1x1 collisionCapsule}

capsulesTool{1}

ans = 
  collisionCapsule with properties:

    Radius: 0.1500
    Length: 0
      Pose: [4x4 double]

Remove the capsule from the base link. Then, reduce the collision capsule size of tool0, and move it
-0.05 meters from the previous position along the x-axis.

removeCapsule(capsIRB,"base_link",1)
updatePose(capsIRB,"tool0",trvec2tform([-0.05 0 0]),1)
updateGeometry(capsIRB,"tool0",[.1 0.01],1)
show(capsIRB,homeConfiguration(capsIRB.RigidBodyTree));

 updatePose
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Input Arguments
capapprox — Capsule approximation of rigid body tree
capsuleApproximation object

Capsule approximation of a rigid body tree, specified as a capsuleApproximation object.

bodyname — Name of rigid body
string scalar | character vector

Name of the rigid body, specified as a string scalar or character vector. The rigid body must exist in
the rigidBodyTree object of the RigidBodyTree property of capsapprox.
Example: "EndEffectorTool"
Data Types: char | string

idx — Index of collision capsule in rigid body
nonnegative integer

Index of the collision capsule in the rigid body, specified as a nonnegative integer.
Example: 5

pose — Updated pose for collision capsule
4-by-4 matrix
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Updated pose for the collision capsule, specified as a 4-by-4 homogeneous transformation matrix
defined with respect to the frame of the rigid body bodyname.
Example: eye(4)

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
capsuleApproximation

Functions
addCapsule | removeCapsule | show | getCapsules | updateGeometry

 updatePose
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genspheres
Generate spheres along central line segment of capsule

Syntax
spheres = genspheres(capsule,ratio)

Description
spheres = genspheres(capsule,ratio) generates spheres along the central line segment of
the collision capsule capsule at the specified normalized positions ratio of the line segment.

Examples

Generate Collision Spheres Inside Collision Capsule

Create a collision capsule with a radius of 2 and length of 10. Visualize the capsule.

cCapsule = collisionCapsule(2,10);
[~,p] = show(cCapsule);

Generate spheres at ratios 0.0, 0.5, and 1.0 of the capsule length.

spheres = genspheres(cCapsule,linspace(0,1,3));

Display the positions of the spheres.

for i = 1:length(spheres)
    disp(tform2trvec(spheres{i}.Pose))
end

     0     0    -5

     0     0     0

     0     0     5

Set the face and edge alphas of the capsule to low values. This ensures that both the spheres are
visible when you add them to the figure.

p.FaceAlpha = 0.4;
p.EdgeAlpha = 0.01;
hold on

Display the generated spheres on the capsule.

cellfun(@show,spheres);
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Input Arguments
capsule — Collision capsule
collisionCapsule object

Collision capsule, specified as a collisionCapsule object.
Example: collisionCapsule(3,5)

ratio — Normalized positions along central line segment of collision capsule
N-element row vector of values in range [0, 1]

Normalized positions along the central line segment of the collision capsule, specified as an N-
element row vector of values in the range [0, 1]. N is the number of collision spheres to generate.
Each element specifies the position of a sphere as a percentage of the central segment length.
Example: For collision capsule with a central line segment length of 4 meters, a ratio position vector
[0.25 0.5 0.75] generates collision spheres at 1, 2, and 3 meters along the central line segment
of the collision capsule.

Output Arguments
spheres — Collision spheres
N-element cell array

 genspheres
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Collision spheres, returned as an N-element cell array of collisionSphere objects, where N is the
number of generated collision spheres.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The ratio input argument must be specified as a compile-time constant during code generation.

See Also
Objects
collisionCapsule

Functions
convertToCollisionMesh | show | checkCollision
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convertToCollisionMesh
Convert collision primitive geometry into collision mesh geometry

Syntax
collisionMesh = convertToCollisionMesh(collisionObj)

Description
collisionMesh = convertToCollisionMesh(collisionObj) converts a collision primitive
geometry, collisionObj, to a convex mesh collision geometry, collisionMesh, which retains the
pose of collisionObj.

Note Because converting a collision primitive to a collision mesh discretizes the underlying
primitive, the converted mesh can return a different checkCollision result than the primitive
equivalent.

Examples

Convert Collision Geometry to Collision Mesh

Create and visualize a box as a collision geometry object.

box = collisionBox(2,3,4)

box = 
  collisionBox with properties:

       X: 2
       Y: 3
       Z: 4
    Pose: [4x4 double]

show(box);

 convertToCollisionMesh
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Convert the collision box to a mesh. Visualize the mesh.

mesh = convertToCollisionMesh(box)

mesh = 
  collisionMesh with properties:

    Vertices: [8x3 double]
        Pose: [4x4 double]

show(mesh);
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Input Arguments
collisionObj — Collision geometry object
collisionBox object | collisionSphere object | collisionCylinder object |
collisionCapsule object

Collision geometry object, specified as a collisionBox, collisionSphere, collisionCylinder,
or collisionCapsule object. The function converts this object into a collision mesh.

Output Arguments
collisionMesh — Collision mesh
collisionMesh object

Collision mesh, returned as a collisionMesh object. This object is the mesh equivalent of the
specified collision geometry object.

Version History
Introduced in R2022a

 convertToCollisionMesh
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
collisionMesh | collisionBox | collisionSphere | collisionCylinder |
collisionCapsule

Topics
“Generate Code for Manipulator Motion Planning in Perceived Environment”
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fitCollisionCapsule
Fit collision capsule around collision geometry

Syntax
[collCapsule,fitInfo] = fitCollisionCapsule(geom)

Description
[collCapsule,fitInfo] = fitCollisionCapsule(geom) fits a collision capsule collCapsule
around a collision geometry geom.

Examples

Fit Collision Capsule Around Collision Box

Create a box with a length, width, and height of 1 meter and fit a collision capsule on it.

box = collisionBox(1,1,1);
show(box);
hold on
[collcaps,fitinfo]= fitCollisionCapsule(box);

Visualize the new collision capsule on top of the box and set the alphas of the capsule to a low value
so that the box is visible.

[~,capvis] = show(collcaps);
capvis.FaceAlpha=0.4;
xlim auto
ylim auto
zlim auto

 fitCollisionCapsule
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Input Arguments
geom — Collision geometry
collisionBox object | collisionCylinder object | collisionSphere object | collisionMesh
object

Collision geometry to fit capsule onto, specified as either a collisionBox, collisionSphere,
collisionCylinder, or collisionMesh object.

Output Arguments
collCapsule — Collision capsule of the collision geometry
collisionCapsule object

Collision capsule of the collision geometry, returned as a collisionCapsule object

fitInfo — Fit information of collision capsule
structure

Fit information of the collision capsule, returned as a structure. The structure contains the Residual
field, returned as an N-element vector, where N is the total number of points of the collision
geometry. Each element of the vector specifies the residual of a point of the collision geometry as:

(ocg− lcc) + rcc
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where:

• ocg is the origin of the fitted collision object.
• lcc is the closest point of the central line of the collision capsule to ocg.
• rcc is the radius of the collision capsule.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
collisionBox | collisionSphere | collisionCylinder | collisionMesh |
collisionCapsule

Functions
convertToCollisionMesh | show | checkCollision | genspheres

 fitCollisionCapsule
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show
Show collision geometry

Syntax
show(geom)
show(geom,"Parent",AX)

ax = show( ___ )
[ax,patchobj] = show( ___ )

Description
show(geom) shows the collision geometry in the current figure at its current pose. The function
automatically generates the tessellation.

show(geom,"Parent",AX) specifies the axes AX in which to plot the collision geometry.

ax = show( ___ ) returns the axes on which you plot the collision geometry.

[ax,patchobj] = show( ___ ) returns the graphic object patchobj that represents the collision
geometry in the plot.

Examples

Show Collision Geometry

Create a cylinder collision geometry. The cylinder has a length of 3 meters and a radius of 1 meter.

cyl = collisionCylinder(1,3);

Show the cylinder.

show(cyl)
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Show the cylinder in a new figure, and return the patch object that represents the cylinder. Change
the cylinder color to cyan by changing the RGB value of the FaceColor field in the patch object.
Hide the edges by setting EdgeColor to 'none'.

figure
[~,patchObj] = show(cyl);
patchObj.FaceColor = [0 1 1];
patchObj.EdgeColor = 'none';

 show
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Input Arguments
geom — Collision geometry
collisionBox object | collisionCapsule object | collisionCylinder object | collisionMesh
object | collisionSphere object

Collision geometry to show, specified as one of these objects:

• collisionBox
• collisionCapsule
• collisionCylinder
• collisionMesh
• collisionSphere

AX — Axes on which to plot collision geometry
Axes object

Axes on which to plot the collision geometry, specified as an Axes object.

Output Arguments
ax — Axes displaying collision geometry
Axes object
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Axes displaying the collision geometry, returned as an Axes object. For more information, see Axes
Properties.

patchobj — Graphic object
Patch object

Graphic object that represents the collision geometry, returned as a Patch object. For more
information, see Patch Properties.

Version History
Introduced in R2019b

See Also
collisionBox | collisionCylinder | collisionMesh | collisionSphere |
collisionCapsule
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info
Characteristic information about controllerPurePursuit object

Syntax
controllerInfo = info(controller)

Description
controllerInfo = info(controller) returns a structure, controllerInfo, with additional
information about the status of the controllerPurePursuit object, controller. The structure
contains the fields, RobotPose and LookaheadPoint.

Examples

Get Additional Pure Pursuit Object Information

Use the info method to get more information about a controllerPurePursuit object. The info
function returns two fields, RobotPose and LookaheadPoint, which correspond to the current
position and orientation of the robot and the point on the path used to compute outputs from the last
call of the object.

Create a controllerPurePursuit object.

pp = controllerPurePursuit;

Assign waypoints.

pp.Waypoints = [0 0;1 1];

Compute control commands using the pp object with the initial pose [x y theta] given as the
input.

[v,w] = pp([0 0 0]);

Get additional information.

s = info(pp)

s = struct with fields:
         RobotPose: [0 0 0]
    LookaheadPoint: [0.7071 0.7071]

Input Arguments
controller — Pure pursuit controller
controllerPurePursuit object

Pure pursuit controller, specified as a controllerPurePursuit object.
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Output Arguments
controllerInfo — Information on the controllerPurePursuit object
structure

Information on the controllerPurePursuit object, returned as a structure. The structure contains
two fields:

• RobotPose – A three-element vector in the form [x y theta] that corresponds to the x-y
position and orientation of the vehicle. The angle, theta, is measured in radians with positive
angles measured counterclockwise from the x-axis.

• LookaheadPoint– A two-element vector in the form [x y]. The location is a point on the path
that was used to compute outputs of the last call to the object.

Version History
Introduced in R2019b

See Also
controllerPurePursuit

Topics
“Pure Pursuit Controller”
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applyTransform
Apply forward transformation to mesh vertices

Syntax
transformedMesh = applyTransform(mesh,T)

Description
transformedMesh = applyTransform(mesh,T) applies the forward transformation matrix T to
the vertices of the object mesh.

Examples

Create and Transform Cuboid Mesh

Create an extendedObjectMesh object and transform the object by using a transformation matrix.

Create a cuboid mesh of unit dimensions.

cuboid = extendedObjectMesh('cuboid');

Create a transformation matrix that is a combination of a translation, a scaling, and a rotation.

tform = makehgtform('translate',[0.2 -0.5 0.5], ...
    'scale',[0.5 0.6 0.7], ...
    'xrotate',pi/4);

Transform the mesh.

transformedCuboid = applyTransform(cuboid,tform);

Visualize the meshes.

subplot(1,2,1);
show(cuboid);
title('Initial Mesh')

subplot(1,2,2);
show(transformedCuboid);
title('Transformed Mesh')
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

T — Transformation matrix
4-by-4 matrix

Transformation matrix applied on the object mesh, specified as a 4-by-4 matrix. The 3-D coordinates
of each point in the object mesh is transformed according to this formula:

[xT; yT; zT; 1] = T*[x; y; z; 1]

xT, yT, and zT are the transformed 3-D coordinates of the point.
Data Types: single | double

Output Arguments
transformedMesh — Transformed object mesh
extendedObjectMesh object

Transformed object mesh, returned as an extendedObjectMesh object.

 applyTransform
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Version History
Introduced in R2022a

See Also
Objects
extendedObjectMesh

Functions
join | rotate | scale | scaleToFit | show | translate

3 Methods
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join
Join two object meshes

Syntax
joinedMesh = join(mesh1,mesh2)

Description
joinedMesh = join(mesh1,mesh2) joins the object meshes mesh1 and mesh2 and returns
joinedMesh with the combined objects.

Examples

Create and Join Two Object Meshes

Create extendedObjectMesh objects and join them together.

Construct two meshes of unit dimensions.

sph = extendedObjectMesh('sphere');
cub = extendedObjectMesh('cuboid');

Join the two meshes.

cub = translate(cub,[0 0 1]);
sphCub = join(sph,cub);

Visualize the final mesh.

show(sphCub);

 join
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Input Arguments
mesh1 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

mesh2 — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

Output Arguments
joinedMesh — Joined object mesh
extendedObjectMesh object

Joined object mesh, specified as an extendedObjectMesh object.

Version History
Introduced in R2022a
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See Also
Objects
extendedObjectMesh

Functions
applyTransform | rotate | scale | scaleToFit | show | translate

 join
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rotate
Rotate mesh about coordinate axes

Syntax
rotatedMesh = rotate(mesh,orient)

Description
rotatedMesh = rotate(mesh,orient) rotate the mesh object by an orientation, orient.

Examples

Create and Rotate Cuboid Mesh

Create an extendedObjectMesh object and rotate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Rotate the mesh by 30 degrees around the z axis.

mesh = rotate(mesh,[30 0 0]);

Visualize the mesh.

ax = show(mesh);
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

orient — Description of rotation
3-by-3 orthonormal matrix | quaternion | 1-by-3 vector

Description of rotation for an object mesh, specified as:

• 3-by-3 orthonormal rotation matrix
• quaternion
• 1-by-3 vector, where the elements are positive rotations in degrees about the z, y, and x axes, in

that order.

Output Arguments
rotatedMesh — Rotated object mesh
extendedObjectMesh object

Rotated object mesh, returned as an extendedObjectMesh object.

 rotate

3-141



Version History
Introduced in R2022a

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | scale | scaleToFit | show | translate

3 Methods
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scale
Scale mesh in each dimension

Syntax
scaledMesh = scale(mesh,scaleFactor)
scaledMesh = scale(mesh,[sx sy sz])

Description
scaledMesh = scale(mesh,scaleFactor) scales the object mesh by scaleFactor.
scaleFactor can be the same for all dimensions or defined separately as elements of a 1-by-3 vector
in the order x, y, and z.

scaledMesh = scale(mesh,[sx sy sz]) scales the object mesh along the dimensions x, y, and z
by the scaling factors sx, sy, and sz.

Examples

Create and Scale Cuboid Mesh

Create an extendedObjectMesh object and scale the object.

Construct a cuboid mesh of unit dimensions.

 cuboid = extendedObjectMesh('cuboid');

Scale the mesh by different factors along each of the three axes.

scaledCuboid = scale(cuboid,[100 30 20]);

Visualize the mesh.

show(scaledCuboid);

 scale

3-143



Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

scaleFactor — Scaling factor
positive real scalar | 1-by-3 vector

Scaling factor for the object mesh, specified as a positive real scalar or as a 1-by-3 vector in the order
x, y, and z.
Data Types: single | double

sx — Scaling factor for x-axis
positive real scalar

Scaling factor for x-axis, specified as a positive real scalar.
Data Types: single | double

sy — Scaling factor for y-axis
positive real scalar

Scaling factor for y-axis, specified as a positive real scalar.
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Data Types: single | double

sz — Scaling factor for z-axis
positive real scalar

Scaling factor for z-axis, specified as a positive real scalar.
Data Types: single | double

Output Arguments
scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

Version History
Introduced in R2022a

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scaleToFit | show | translate
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scaleToFit
Auto-scale object mesh to match specified cuboid dimensions

Syntax
scaledMesh = scaleToFit(mesh,dims)

Description
scaledMesh = scaleToFit(mesh,dims) auto-scales the object mesh to match the dimensions of
a cuboid specified in the structure dims.

Examples

Create and Auto-Scale Sphere Mesh

Create an extendedObjectMesh object and auto-scale the object to the required dimensions.

Construct a sphere mesh of unit dimensions.

sph = extendedObjectMesh('sphere');

Auto-scale the mesh to the dimensions in dims.

dims = struct('Length',5,'Width',10,'Height',3,'OriginOffset',[0 0 -3]);
sph = scaleToFit(sph,dims);

Visualize the mesh.

show(sph);
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

dims — Cuboid dimensions
structure

Dimensions of the cuboid to scale an object mesh, specified as a struct with these fields:

• Length – Length of the cuboid
• Width – Width of the cuboid
• Height – Height of the cuboid
• OriginOffset – Origin offset in 3-D coordinates

All the dimensions are in meters.
Data Types: struct
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Output Arguments
scaledMesh — Scaled object mesh
extendedObjectMesh object

Scaled object mesh, returned as an extendedObjectMesh object.

Version History
Introduced in R2022a

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scale | show | translate
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show
Display the mesh as a patch on the current axes

Syntax
show(mesh)
show(mesh,ax)
ax = show(mesh)

Description
show(mesh) displays the extendedObjectMesh as a patch on the current axes. If there are no
active axes, the function creates new axes.

show(mesh,ax) displays the object mesh as a patch on the axes ax.

ax = show(mesh) optionally outputs the handle to the axes where the mesh was plotted.

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

ax — Current axes
axes object

Current axes, specified as an axes object.

Version History
Introduced in R2022a

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scale | scaleToFit | translate
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translate
Translate mesh along coordinate axes

Syntax
translatedMesh = translate(mesh,deltaPos)

Description
translatedMesh = translate(mesh,deltaPos) translates the object mesh by the distances
specified by deltaPos along the coordinate axes.

Examples

Create and Translate Cuboid Mesh

Create an extendedObjectMesh object and translate the object.

Construct a cuboid mesh.

mesh = extendedObjectMesh('cuboid');

Translate the mesh by 5 units along the negative y axis.

mesh = translate(mesh,[0 -5 0]);

Visualize the mesh.

ax = show(mesh);
ax.YLim = [-6 0];
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Input Arguments
mesh — Extended object mesh
extendedObjectMesh object

Extended object mesh, specified as an extendedObjectMesh object.

deltaPos — Translation vector
three-element real-valued vector

Translation vector for an object mesh, specified as a three-element real-valued vector. The three
elements in the vector define the translation along the x, y, and z axes.
Data Types: single | double

Output Arguments
translatedMesh — Translated object mesh
extendedObjectMesh object

Translated object mesh, returned as an extendedObjectMesh object.
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Version History
Introduced in R2022a

See Also
Objects
extendedObjectMesh

Functions
applyTransform | join | rotate | scale | scaleToFit | show
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perturb
Apply perturbations to object

Syntax
offsets = perturb(obj)

Description
offsets = perturb(obj) applies the perturbations defined on the object, obj and returns the
offset values. You can define perturbations on the object by using the perturbations function.

Examples

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
     ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
       Property          Type            Value       
    _______________    ________    __________________

    "Waypoints"        "Normal"    {[  1]}    {[  1]}
    "TimeOfArrival"    "None"      {[NaN]}    {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})

3 Methods

3-154



perturbs2=2×3 table
       Property           Type                     Value             
    _______________    ___________    _______________________________

    "Waypoints"        "Normal"       {[     1]}    {[            1]}
    "TimeOfArrival"    "Selection"    {1x2 cell}    {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
    Property
    Offset
    PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

    1.8674    1.0203    0.7032
    2.3154   -0.3207    0.0999

traj.TimeOfArrival

ans = 2×1

     0
     2

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.2                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         
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Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

    0.3333    0.3333    0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)

ans=7×3 table
            Property                Type                        Value                 
    _________________________    ___________    ______________________________________

    "RollAccuracy"               "Selection"    {1x3 cell}    {[0.3333 0.3333 0.3333]}
    "PitchAccuracy"              "None"         {[   NaN]}    {[                 NaN]}
    "YawAccuracy"                "None"         {[   NaN]}    {[                 NaN]}
    "PositionAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "VelocityAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "AccelerationAccuracy"       "None"         {[   NaN]}    {[                 NaN]}
    "AngularVelocityAccuracy"    "None"         {[   NaN]}    {[                 NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.5                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

The RollAccuracy is perturbed to 0.5 deg.
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Input Arguments
obj — Object for perturbation
objects

Object for perturbation, specified as an object. The objects that you can perturb include:

• insSensor
• waypointTrajectory

Output Arguments
offsets — Property offsets
array of structure

Property offsets, returned as an array of structures. Each structure contains these fields:

Field Name Description
Property Name of perturbed property
Offset Offset values applied in the perturbation
PerturbedValue Property values after the perturbation

Version History
Introduced in R2022a

See Also
perturbations

 perturb
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perturbations
Perturbation defined on object

Syntax
perturbs = perturbations(obj)
perturbs = perturbations(obj,property)
perturbs = perturbations(obj,property,'None')
perturbs = perturbations(obj,property,'Selection',values,probabilities)
perturbs = perturbations(obj,property,'Normal',mean,deviation)
perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit)
perturbs = perturbations(obj,property,'Uniform',minVal,maxVal)
perturbs = perturbations(obj,property,'Custom',perturbFcn)

Description
perturbs = perturbations(obj) returns the list of property perturbations, perturbs, defined
on the object, obj. The returned perturbs lists all the perturbable properties. If any property is not
perturbed, then its corresponding Type is returned as "Null" and its corresponding Value is
returned as {Null,Null}.

perturbs = perturbations(obj,property) returns the current perturbation applied to the
specified property.

perturbs = perturbations(obj,property,'None') defines a property that must not be
perturbed.

perturbs = perturbations(obj,property,'Selection',values,probabilities) defines
the property perturbation offset drawn from a set of values that have corresponding
probabilities.

perturbs = perturbations(obj,property,'Normal',mean,deviation) defines the
property perturbation offset drawn from a normal distribution with specified mean and standard
deviation.

perturbs = perturbations(obj,property,'TruncatedNormal',mean,deviation,
lowerLimit,upperLimit) defines the property perturbation offset drawn from a normal
distribution with specified mean, standard deviation, lower limit, and upper limit.

perturbs = perturbations(obj,property,'Uniform',minVal,maxVal) defines the
property perturbation offset drawn from a uniform distribution on an interval [minVal, maxValue].

perturbs = perturbations(obj,property,'Custom',perturbFcn) enables you to define a
custom function, perturbFcn, that draws the perturbation offset value.

Examples
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Default Perturbation Properties of waypointTrajectory

Create a waypointTrajectory object.

traj = waypointTrajectory;

Show the default perturbation properties using the perturbations method.

perturbs = perturbations(traj)

perturbs=2×3 table
       Property         Type           Value       
    _______________    ______    __________________

    "Waypoints"        "None"    {[NaN]}    {[NaN]}
    "TimeOfArrival"    "None"    {[NaN]}    {[NaN]}

Perturb Accuracy of insSensor

Create an insSensor object.

sensor = insSensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.2                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

Define the perturbation on the RollAccuracy property as three values with an equal possibility
each.

values = {0.1 0.2 0.3}

values=1×3 cell array
    {[0.1000]}    {[0.2000]}    {[0.3000]}

probabilities = [1/3 1/3 1/3]

probabilities = 1×3

    0.3333    0.3333    0.3333

perturbations(sensor,'RollAccuracy','Selection',values,probabilities)
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ans=7×3 table
            Property                Type                        Value                 
    _________________________    ___________    ______________________________________

    "RollAccuracy"               "Selection"    {1x3 cell}    {[0.3333 0.3333 0.3333]}
    "PitchAccuracy"              "None"         {[   NaN]}    {[                 NaN]}
    "YawAccuracy"                "None"         {[   NaN]}    {[                 NaN]}
    "PositionAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "VelocityAccuracy"           "None"         {[   NaN]}    {[                 NaN]}
    "AccelerationAccuracy"       "None"         {[   NaN]}    {[                 NaN]}
    "AngularVelocityAccuracy"    "None"         {[   NaN]}    {[                 NaN]}

Perturb the sensor object using the perturb function.

rng(2020)
perturb(sensor);
sensor

sensor = 
  insSensor with properties:

           MountingLocation: [0 0 0]            m    
               RollAccuracy: 0.5                deg  
              PitchAccuracy: 0.2                deg  
                YawAccuracy: 1                  deg  
           PositionAccuracy: [1 1 1]            m    
           VelocityAccuracy: 0.05               m/s  
       AccelerationAccuracy: 0                  m/s² 
    AngularVelocityAccuracy: 0                  deg/s
                  TimeInput: 0                       
               RandomStream: 'Global stream'         

The RollAccuracy is perturbed to 0.5 deg.

Perturb Waypoint Trajectory

Define a waypoint trajectory. By default, this trajectory contains two waypoints.

traj = waypointTrajectory

traj = 
  waypointTrajectory with properties:

         SampleRate: 100
    SamplesPerFrame: 1
          Waypoints: [2x3 double]
      TimeOfArrival: [2x1 double]
         Velocities: [2x3 double]
             Course: [2x1 double]
        GroundSpeed: [2x1 double]
          ClimbRate: [2x1 double]
        Orientation: [2x1 quaternion]
          AutoPitch: 0
           AutoBank: 0
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     ReferenceFrame: 'NED'

Define perturbations on the Waypoints property and the TimeOfArrival property.

rng(2020);
perturbs1 = perturbations(traj,'Waypoints','Normal',1,1)

perturbs1=2×3 table
       Property          Type            Value       
    _______________    ________    __________________

    "Waypoints"        "Normal"    {[  1]}    {[  1]}
    "TimeOfArrival"    "None"      {[NaN]}    {[NaN]}

perturbs2 = perturbations(traj,'TimeOfArrival','Selection',{[0;1],[0;2]})

perturbs2=2×3 table
       Property           Type                     Value             
    _______________    ___________    _______________________________

    "Waypoints"        "Normal"       {[     1]}    {[            1]}
    "TimeOfArrival"    "Selection"    {1x2 cell}    {[0.5000 0.5000]}

Perturb the trajectory.

offsets = perturb(traj)

offsets=2×1 struct array with fields:
    Property
    Offset
    PerturbedValue

The Waypoints property and the TimeOfArrival property have changed.

traj.Waypoints

ans = 2×3

    1.8674    1.0203    0.7032
    2.3154   -0.3207    0.0999

traj.TimeOfArrival

ans = 2×1

     0
     2

Input Arguments
obj — Object to be perturbed
objects
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Object to be perturbed, specified as an object. The objects that you can perturb include:

• insSensor
• waypointTrajectory

property — Perturbable property
property name

Perturbable property, specified as a property name. Use perturbations to obtain a full list of
perturbable properties for the specified obj.

values — Perturbation offset values
n-element cell array of property values

Perturbation offset values, specified as an n-element cell array of property values. The function
randomly draws the perturbation value for the property from the cell array based on the values'
corresponding probabilities specified in the probabilities input.

probabilities — Drawing probabilities for each perturbation value
n-element array of nonnegative scalar

Drawing probabilities for each perturbation value, specified as an n-element array of nonnegative
scalars, where n is the number of perturbation values provided in the values input. The sum of all
elements must be equal to one.

For example, you can specify a series of perturbation value-probability pair as {x1,x2,…,xn} and
{p1,p2,…,pn}, where the probability of drawing xi is pi (i = 1, 2, …,n).

mean — Mean of normal or truncated normal distribution
scalar | vector | matrix

Mean of normal or truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of mean must be compatible with the corresponding property that you perturb.

deviation — Standard deviation of normal or truncated normal distribution
nonnegative scalar | vector of nonnegative scalar | matrix of nonnegative scalar

Standard deviation of normal or truncated normal distribution, specified as a nonnegative scalar,
vector of nonnegative scalars, or matrix of nonnegative scalars. The dimension of deviation must
be compatible with the corresponding property that you perturb.

lowerLimit — Lower limit of truncated normal distribution
scalar | vector | matrix

Lower limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of lowerLimit must be compatible with the corresponding property that you perturb.

upperLimit — Upper limit of truncated normal distribution
scalar | vector | matrix

Upper limit of the truncated normal distribution, specified as a scalar, vector, or matrix. The
dimension of upperLimit must be compatible with the corresponding property that you perturb.

minVal — Minimum value of uniform distribution interval
scalar | vector | matrix
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Minimum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of minVal must be compatible with the corresponding property that you perturb.

maxVal — Maximum value of uniform distribution interval
scalar | vector | matrix

Maximum value of the uniform distribution interval, specified as a scalar, vector, or matrix. The
dimension of maxVal must be compatible with the corresponding property that you perturb.

perturbFcn — Perturbation function
function handle

Perturbation function, specified as a function handle. The function must have this syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the property.

Output Arguments
perturbs — Perturbations defined on object
table of perturbation property

Perturbations defined on the object, returned as a table of perturbation properties. The table has
three columns:

• Property — Property names.
• Type — Type of perturbations, returned as "None", "Selection", "Normal",

"TruncatedNormal", "Uniform", or "Custom".
• Value — Perturbation values, returned as a cell array.

More About
Specify Perturbation Distributions

You can specify the distribution for the perturbation applied to a specific property.

• Selection distribution — The function defines the perturbation offset as one of the specified values
with the associated probability. For example, if you specify the values as [1 2] and specify the
probabilities as [0.7 0.3], then the perturb function adds an offset value of 1 to the property
with a probability of 0.7 and add an offset value of 2 to the property with a probability of 0.3.
Use selection distribution when you only want to perturb the property with a number of discrete
values.

• Normal distribution — The function defines the perturbation offset as a value drawn from a normal
distribution with the specified mean and standard deviation (or covariance). Normal distribution is
the most commonly used distribution since it mimics the natural perturbation of parameters in
most cases.

• Truncated normal distribution — The function defines the perturbation offset as a value drawn
from a truncated normal distribution with the specified mean, standard deviation (or covariance),
lower limit, and upper limit. Different from the normal distribution, the values drawn from a
truncated normal distribution are truncated by the lower and upper limit. Use truncated normal
distribution when you want to apply a normal distribution, but the valid values of the property are
confined in an interval.
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• Uniform distribution — The function defines the perturbation offset as a value drawn from a
uniform distribution with the specified minimum and maximum values. All the values in the
interval (specified by the minimum and maximum values) have the same probability of realization.

• Custom distribution — Customize your own perturbation function. The function must have this
syntax:

offset = myfun(propVal)

where propVal is the value of the property and offset is the perturbation offset for the
property.

This figure shows probability density functions for a normal distribution, a truncated normal
distribution, and a uniform distribution, respectively.

Version History
Introduced in R2022a

See Also
perturb
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addConfiguration
Store current configuration

Syntax
addConfiguration(viztree)
addConfiguration(viztree,index)

Description
addConfiguration(viztree) adds the current configuration to the StoredConfigurations
property of the interactiveRigidBodyTree object, viztree.

addConfiguration(viztree,index) inserts the current configuration into the
StoredConfigurations property at the specified index. The stored configurations after the
specified index shift down by one.

Examples

Interactively Build and Play Back Series of Robot Configurations

Use the interactiveRigidBodyTree object to manually move around a robot in a figure. The
object uses interactive markers in the figure to track the desired poses of different rigid bodies in the
rigidBodyTree object.

Load Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot("atlas");

Visualize Robot and Save Configurations

Create an interactive tree object and associated figure, specifying the loaded robot model and its left
hand as the end effector.

viztree = interactiveRigidBodyTree(robot,"MarkerBodyName","l_hand");
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Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

Programmatically set the current configuration. Assign a vector of length equal to the number of
nonfixed joints in the RigidBodyTree to the Configuration property.

currConfig = homeConfiguration(viztree.RigidBodyTree);
currConfig(1:10) = [ 0.2201 -0.1319 0.2278 -0.3415 0.4996 ...
                     0.0747 0.0377 0.0718 -0.8117 -0.0427]';
viztree.Configuration = currConfig;
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Save the current robot configuration in the StoredConfigurations property.

addConfiguration(viztree)

To switch the end effector to a different rigid body, right-click the desired body in the figure and
select Set body as marker body. Use this process to select the right hand frame.
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You can also set the MarkerBodyName property to the specific body name.

viztree.MarkerBodyName = "r_hand";

3 Methods
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Move the right hand to a new position. Set the configuration programmatically. The marker moves to
the new position of the end effector.

currConfig(1:18) = [-0.1350 -0.1498 -0.0167 -0.3415 0.4996 0.0747
                     0.0377 0.0718 -0.8117 -0.0427 0 0.4349 
                    -0.5738 0.0563 -0.0095 0.0518 0.8762 -0.0895]';
                
viztree.Configuration = currConfig;
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Save the current configuration.

addConfiguration(viztree)

Add Constraints

By default, the robot model respects only the joint limits of the rigidBodyJoint objects associated
with the RigidBodyTree property. To add constraints, generate Robot Constraint objects and
specify them as a cell array in the Constraints property. To see a list of robotic constraints, see
“Inverse Kinematics”. Specify a pose target for the pelvis to keep it fixed to the home position.
Specify a position target for the right foot to be raised in front front and above its current position.

fixedWaist = constraintPoseTarget("pelvis");
raiseRightLeg = constraintPositionTarget("r_foot","TargetPosition",[1 0 0.5]);

Apply these constraints to the interactive rigid body tree object as a cell array. The right leg in the
resulting figure changes position.

viztree.Constraints = {fixedWaist raiseRightLeg};                               
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Notice the change in position of the right leg. Save this configuration as well.

addConfiguration(viztree)

Play Back Configurations

To play back configurations, iterate through the stored configurations index and set the current
configuration equal to the stored configuration column vector at each iteration. Because
configurations are stored as column vectors, use the second dimension of the matrix.

for i = 1:size(viztree.StoredConfigurations,2)
    viztree.Configuration = viztree.StoredConfigurations(:,i);
    pause(0.5)
end
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Input Arguments
viztree — Interactive rigid body tree robot model visualization
interactiveRigidBodyTree object

Interactive rigid body tree robot model visualization, specified as an interactiveRigidBodyTree
object.

index — Index location to store current configuration
positive integer

Index location to store current configuration, specified as a positive integer. The stored configurations
after the specified index shift down by one.
Data Types: double

Version History
Introduced in R2020a

See Also
Functions
removeConfigurations | loadrobot | importrobot | homeConfiguration

3 Methods

3-172



Objects
interactiveRigidBodyTree | rigidBodyTree | rigidBody | rigidBodyJoint |
generalizedInverseKinematics

Topics
“Rigid Body Tree Robot Model”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
“Trajectory Control Modeling with Inverse Kinematics”
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addConstraint
Add inverse kinematics constraint

Syntax
addConstraint(viztree,gikConstraint)

Description
addConstraint(viztree,gikConstraint) adds an inverse kinematics constraint,
gikConstaint, to the Constraints property of the interactiveRigidBodyTree object,
viztree.

Examples

Interactively Build and Play Back Series of Robot Configurations

Use the interactiveRigidBodyTree object to manually move around a robot in a figure. The
object uses interactive markers in the figure to track the desired poses of different rigid bodies in the
rigidBodyTree object.

Load Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot("atlas");

Visualize Robot and Save Configurations

Create an interactive tree object and associated figure, specifying the loaded robot model and its left
hand as the end effector.

viztree = interactiveRigidBodyTree(robot,"MarkerBodyName","l_hand");
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Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

Programmatically set the current configuration. Assign a vector of length equal to the number of
nonfixed joints in the RigidBodyTree to the Configuration property.

currConfig = homeConfiguration(viztree.RigidBodyTree);
currConfig(1:10) = [ 0.2201 -0.1319 0.2278 -0.3415 0.4996 ...
                     0.0747 0.0377 0.0718 -0.8117 -0.0427]';
viztree.Configuration = currConfig;
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Save the current robot configuration in the StoredConfigurations property.

addConfiguration(viztree)

To switch the end effector to a different rigid body, right-click the desired body in the figure and
select Set body as marker body. Use this process to select the right hand frame.
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You can also set the MarkerBodyName property to the specific body name.

viztree.MarkerBodyName = "r_hand";
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Move the right hand to a new position. Set the configuration programmatically. The marker moves to
the new position of the end effector.

currConfig(1:18) = [-0.1350 -0.1498 -0.0167 -0.3415 0.4996 0.0747
                     0.0377 0.0718 -0.8117 -0.0427 0 0.4349 
                    -0.5738 0.0563 -0.0095 0.0518 0.8762 -0.0895]';
                
viztree.Configuration = currConfig;
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Save the current configuration.

addConfiguration(viztree)

Add Constraints

By default, the robot model respects only the joint limits of the rigidBodyJoint objects associated
with the RigidBodyTree property. To add constraints, generate Robot Constraint objects and
specify them as a cell array in the Constraints property. To see a list of robotic constraints, see
“Inverse Kinematics”. Specify a pose target for the pelvis to keep it fixed to the home position.
Specify a position target for the right foot to be raised in front front and above its current position.

fixedWaist = constraintPoseTarget("pelvis");
raiseRightLeg = constraintPositionTarget("r_foot","TargetPosition",[1 0 0.5]);

Apply these constraints to the interactive rigid body tree object as a cell array. The right leg in the
resulting figure changes position.

viztree.Constraints = {fixedWaist raiseRightLeg};                               
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Notice the change in position of the right leg. Save this configuration as well.

addConfiguration(viztree)

Play Back Configurations

To play back configurations, iterate through the stored configurations index and set the current
configuration equal to the stored configuration column vector at each iteration. Because
configurations are stored as column vectors, use the second dimension of the matrix.

for i = 1:size(viztree.StoredConfigurations,2)
    viztree.Configuration = viztree.StoredConfigurations(:,i);
    pause(0.5)
end
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Input Arguments
viztree — Interactive rigid body tree robot model visualization
interactiveRigidBodyTree object

Interactive rigid body tree robot model visualization, specified as an interactiveRigidBodyTree
object.

gikConstraint — Generalized inverse kinematics constraint
constraint object

Generalized inverse kinematics constraint, specified as one of these constraint objects.

• constraintAiming
• constraintCartesianBounds
• constraintJointBounds
• constraintOrientationTarget
• constraintPoseTarget
• constraintPositionTarget

Version History
Introduced in R2020a
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See Also
Functions
removeConstraints | loadrobot | importrobot | homeConfiguration

Objects
interactiveRigidBodyTree | rigidBodyTree | rigidBody | rigidBodyJoint |
generalizedInverseKinematics

Topics
“Rigid Body Tree Robot Model”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
“Trajectory Control Modeling with Inverse Kinematics”
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removeConfigurations
Remove configurations from StoredConfigurations property

Syntax
removeConfigurations(viztree)
removeConfigurations(viztree,index)

Description
removeConfigurations(viztree) removes the configuration stored at the last index of the
StoredConfigurations property of the interactiveRigidBodyTree object, viztree.

removeConfigurations(viztree,index) removes the configurations with the specified indices.

Examples

Interactively Build and Play Back Series of Robot Configurations

Use the interactiveRigidBodyTree object to manually move around a robot in a figure. The
object uses interactive markers in the figure to track the desired poses of different rigid bodies in the
rigidBodyTree object.

Load Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot("atlas");

Visualize Robot and Save Configurations

Create an interactive tree object and associated figure, specifying the loaded robot model and its left
hand as the end effector.

viztree = interactiveRigidBodyTree(robot,"MarkerBodyName","l_hand");
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Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

Programmatically set the current configuration. Assign a vector of length equal to the number of
nonfixed joints in the RigidBodyTree to the Configuration property.

currConfig = homeConfiguration(viztree.RigidBodyTree);
currConfig(1:10) = [ 0.2201 -0.1319 0.2278 -0.3415 0.4996 ...
                     0.0747 0.0377 0.0718 -0.8117 -0.0427]';
viztree.Configuration = currConfig;
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Save the current robot configuration in the StoredConfigurations property.

addConfiguration(viztree)

To switch the end effector to a different rigid body, right-click the desired body in the figure and
select Set body as marker body. Use this process to select the right hand frame.
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You can also set the MarkerBodyName property to the specific body name.

viztree.MarkerBodyName = "r_hand";

3 Methods
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Move the right hand to a new position. Set the configuration programmatically. The marker moves to
the new position of the end effector.

currConfig(1:18) = [-0.1350 -0.1498 -0.0167 -0.3415 0.4996 0.0747
                     0.0377 0.0718 -0.8117 -0.0427 0 0.4349 
                    -0.5738 0.0563 -0.0095 0.0518 0.8762 -0.0895]';
                
viztree.Configuration = currConfig;
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Save the current configuration.

addConfiguration(viztree)

Add Constraints

By default, the robot model respects only the joint limits of the rigidBodyJoint objects associated
with the RigidBodyTree property. To add constraints, generate Robot Constraint objects and
specify them as a cell array in the Constraints property. To see a list of robotic constraints, see
“Inverse Kinematics”. Specify a pose target for the pelvis to keep it fixed to the home position.
Specify a position target for the right foot to be raised in front front and above its current position.

fixedWaist = constraintPoseTarget("pelvis");
raiseRightLeg = constraintPositionTarget("r_foot","TargetPosition",[1 0 0.5]);

Apply these constraints to the interactive rigid body tree object as a cell array. The right leg in the
resulting figure changes position.

viztree.Constraints = {fixedWaist raiseRightLeg};                               
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Notice the change in position of the right leg. Save this configuration as well.

addConfiguration(viztree)

Play Back Configurations

To play back configurations, iterate through the stored configurations index and set the current
configuration equal to the stored configuration column vector at each iteration. Because
configurations are stored as column vectors, use the second dimension of the matrix.

for i = 1:size(viztree.StoredConfigurations,2)
    viztree.Configuration = viztree.StoredConfigurations(:,i);
    pause(0.5)
end
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Input Arguments
viztree — Interactive rigid body tree robot model visualization
interactiveRigidBodyTree object

Interactive rigid body tree robot model visualization, specified as an interactiveRigidBodyTree
object.

index — Index locations to remove configurations
positive integer | vector of positive integers

Index locations to remove configurations, specified as a positive integer or vector of positive integers.
Data Types: double

Version History
Introduced in R2020a

See Also
Functions
addConfiguration | loadrobot | importrobot | homeConfiguration

3 Methods
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Objects
interactiveRigidBodyTree | rigidBodyTree | rigidBody | rigidBodyJoint |
generalizedInverseKinematics

Topics
“Rigid Body Tree Robot Model”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
“Trajectory Control Modeling with Inverse Kinematics”
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removeConstraints
Remove inverse kinematics constraints

Syntax
removeConstraints(viztree)
removeConstraints(viztree,index)

Description
removeConstraints(viztree)removes the constraint stored at the last index of the
Constraints property of the interactiveRigidBodyTree object, viztree.

removeConstraints(viztree,index) removes the constraints with the specified indices.

Examples

Interactively Build and Play Back Series of Robot Configurations

Use the interactiveRigidBodyTree object to manually move around a robot in a figure. The
object uses interactive markers in the figure to track the desired poses of different rigid bodies in the
rigidBodyTree object.

Load Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot("atlas");

Visualize Robot and Save Configurations

Create an interactive tree object and associated figure, specifying the loaded robot model and its left
hand as the end effector.

viztree = interactiveRigidBodyTree(robot,"MarkerBodyName","l_hand");
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Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

Programmatically set the current configuration. Assign a vector of length equal to the number of
nonfixed joints in the RigidBodyTree to the Configuration property.

currConfig = homeConfiguration(viztree.RigidBodyTree);
currConfig(1:10) = [ 0.2201 -0.1319 0.2278 -0.3415 0.4996 ...
                     0.0747 0.0377 0.0718 -0.8117 -0.0427]';
viztree.Configuration = currConfig;
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Save the current robot configuration in the StoredConfigurations property.

addConfiguration(viztree)

To switch the end effector to a different rigid body, right-click the desired body in the figure and
select Set body as marker body. Use this process to select the right hand frame.
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You can also set the MarkerBodyName property to the specific body name.

viztree.MarkerBodyName = "r_hand";
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Move the right hand to a new position. Set the configuration programmatically. The marker moves to
the new position of the end effector.

currConfig(1:18) = [-0.1350 -0.1498 -0.0167 -0.3415 0.4996 0.0747
                     0.0377 0.0718 -0.8117 -0.0427 0 0.4349 
                    -0.5738 0.0563 -0.0095 0.0518 0.8762 -0.0895]';
                
viztree.Configuration = currConfig;
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Save the current configuration.

addConfiguration(viztree)

Add Constraints

By default, the robot model respects only the joint limits of the rigidBodyJoint objects associated
with the RigidBodyTree property. To add constraints, generate Robot Constraint objects and
specify them as a cell array in the Constraints property. To see a list of robotic constraints, see
“Inverse Kinematics”. Specify a pose target for the pelvis to keep it fixed to the home position.
Specify a position target for the right foot to be raised in front front and above its current position.

fixedWaist = constraintPoseTarget("pelvis");
raiseRightLeg = constraintPositionTarget("r_foot","TargetPosition",[1 0 0.5]);

Apply these constraints to the interactive rigid body tree object as a cell array. The right leg in the
resulting figure changes position.

viztree.Constraints = {fixedWaist raiseRightLeg};                               
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Notice the change in position of the right leg. Save this configuration as well.

addConfiguration(viztree)

Play Back Configurations

To play back configurations, iterate through the stored configurations index and set the current
configuration equal to the stored configuration column vector at each iteration. Because
configurations are stored as column vectors, use the second dimension of the matrix.

for i = 1:size(viztree.StoredConfigurations,2)
    viztree.Configuration = viztree.StoredConfigurations(:,i);
    pause(0.5)
end
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Input Arguments
viztree — Interactive rigid body tree robot model visualization
interactiveRigidBodyTree object

Interactive rigid body tree robot model visualization, specified as an interactiveRigidBodyTree
object.

index — Index locations to remove configurations
positive integer | vector of positive integers

Index locations to remove configurations, specified as a positive integer or vector of positive integers.
Data Types: double

Version History
Introduced in R2020a

See Also
Functions
addConstraint | loadrobot | importrobot | homeConfiguration
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Objects
interactiveRigidBodyTree | rigidBodyTree | rigidBody | rigidBodyJoint |
generalizedInverseKinematics

Topics
“Rigid Body Tree Robot Model”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
“Trajectory Control Modeling with Inverse Kinematics”
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showFigure
Show interactive rigid body tree figure

Syntax
showFigure(viztree)

Description
showFigure(viztree) shows the figure associated with the interactiveRigidBodyTree object,
viztree. If the figure window is open, the function brings it into focus. If the figure window is not
open, the function opens it and brings it into focus.

Examples

Interactively Build and Play Back Series of Robot Configurations

Use the interactiveRigidBodyTree object to manually move around a robot in a figure. The
object uses interactive markers in the figure to track the desired poses of different rigid bodies in the
rigidBodyTree object.

Load Robot Model

Use the loadrobot function to access provided robot models as rigidBodyTree objects.

robot = loadrobot("atlas");

Visualize Robot and Save Configurations

Create an interactive tree object and associated figure, specifying the loaded robot model and its left
hand as the end effector.

viztree = interactiveRigidBodyTree(robot,"MarkerBodyName","l_hand");
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Click and drag the interactive marker to change the robot configuration. You can click and drag any
of the axes for linear motion, rotate the body about an axis using the red, green, and blue circles, and
drag the center of the interactive marker to position it in 3-D space.

The interactiveRigidBodyTree object uses inverse kinematics to determine a configuration that
achieves the desired end-effector pose. If the associated rigid body cannot reach the marker, the
figure renders the best configuration from the inverse kinematics solver.

Programmatically set the current configuration. Assign a vector of length equal to the number of
nonfixed joints in the RigidBodyTree to the Configuration property.

currConfig = homeConfiguration(viztree.RigidBodyTree);
currConfig(1:10) = [ 0.2201 -0.1319 0.2278 -0.3415 0.4996 ...
                     0.0747 0.0377 0.0718 -0.8117 -0.0427]';
viztree.Configuration = currConfig;
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Save the current robot configuration in the StoredConfigurations property.

addConfiguration(viztree)

To switch the end effector to a different rigid body, right-click the desired body in the figure and
select Set body as marker body. Use this process to select the right hand frame.
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You can also set the MarkerBodyName property to the specific body name.

viztree.MarkerBodyName = "r_hand";
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Move the right hand to a new position. Set the configuration programmatically. The marker moves to
the new position of the end effector.

currConfig(1:18) = [-0.1350 -0.1498 -0.0167 -0.3415 0.4996 0.0747
                     0.0377 0.0718 -0.8117 -0.0427 0 0.4349 
                    -0.5738 0.0563 -0.0095 0.0518 0.8762 -0.0895]';
                
viztree.Configuration = currConfig;
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Save the current configuration.

addConfiguration(viztree)

Add Constraints

By default, the robot model respects only the joint limits of the rigidBodyJoint objects associated
with the RigidBodyTree property. To add constraints, generate Robot Constraint objects and
specify them as a cell array in the Constraints property. To see a list of robotic constraints, see
“Inverse Kinematics”. Specify a pose target for the pelvis to keep it fixed to the home position.
Specify a position target for the right foot to be raised in front front and above its current position.

fixedWaist = constraintPoseTarget("pelvis");
raiseRightLeg = constraintPositionTarget("r_foot","TargetPosition",[1 0 0.5]);

Apply these constraints to the interactive rigid body tree object as a cell array. The right leg in the
resulting figure changes position.

viztree.Constraints = {fixedWaist raiseRightLeg};                               
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Notice the change in position of the right leg. Save this configuration as well.

addConfiguration(viztree)

Play Back Configurations

To play back configurations, iterate through the stored configurations index and set the current
configuration equal to the stored configuration column vector at each iteration. Because
configurations are stored as column vectors, use the second dimension of the matrix.

for i = 1:size(viztree.StoredConfigurations,2)
    viztree.Configuration = viztree.StoredConfigurations(:,i);
    pause(0.5)
end
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Input Arguments
viztree — Interactive rigid body tree robot model visualization
interactiveRigidBodyTree object

Interactive rigid body tree robot model visualization, specified as an interactiveRigidBodyTree
object.

Version History
Introduced in R2020a

See Also
Functions
loadrobot | importrobot | homeConfiguration

Objects
interactiveRigidBodyTree | rigidBodyTree | rigidBody | rigidBodyJoint |
generalizedInverseKinematics

Topics
“Rigid Body Tree Robot Model”
“Plan a Reaching Trajectory With Multiple Kinematic Constraints”
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“Trajectory Control Modeling with Inverse Kinematics”

 showFigure

3-209



removeInvalidData
Remove invalid range and angle data

Syntax
validScan = removeInvalidData(scan)
validScan = removeInvalidData(scan,Name,Value)

Description
validScan = removeInvalidData(scan)returns a new lidarScan object with all Inf and NaN
values from the input scan removed. The corresponding angle readings are also removed.

validScan = removeInvalidData(scan,Name,Value)provides additional options specified by
one or more Name,Value pairs.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Input Arguments
scan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ["RangeLimits",[0.05 2]

RangeLimits — Range reading limits
two-element vector

Range reading limits, specified as a two-element vector, [minRange maxRange], in meters. All
range readings and corresponding angles outside these range limits are removed
Data Types: single | double
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AngleLimits — Angle limits
two-element vector

Angle limits, specified as a two-element vector, [minAngle maxAngle] in radians. All angles and
corresponding range readings outside these angle limits are removed.

Angles are measured counter-clockwise around the positivez-axis.
Data Types: single | double

Output Arguments
validScan — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object. All invalid lidar scan readings are removed.

Version History
Introduced in R2017b

See Also
transformScan
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plot
Display laser or lidar scan readings

Syntax
plot(scanObj)
plot( ___ ,Name,Value)
linehandle = plot( ___ )

Description
plot(scanObj) plots the lidar scan readings specified in scanObj.

plot( ___ ,Name,Value) provides additional options specified by one or more Name,Value pair
arguments.

linehandle = plot( ___ ) returns a column vector of line series handles, using any of the
arguments from previous syntaxes. Use linehandle to modify properties of the line series after it is
created.

Examples

Plot Lidar Scan and Remove Invalid Points

Specify lidar data as vectors of ranges and angles. These values include readings outside of the
sensors range.

x = linspace(-2,2);
ranges = abs((1.5).*x.^2 + 5);
ranges(45:55) = 3.5;
angles = linspace(-pi/2,pi/2,numel(ranges));

Create a lidar scan by specifying the ranges and angles. Plot all points of the lidar scan.

scan = lidarScan(ranges,angles);
plot(scan)
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Remove invalid points based on a specified minimum and maximum range.

minRange = 0.1;
maxRange = 7;
scan2 = removeInvalidData(scan,'RangeLimits',[minRange maxRange]);
hold on
plot(scan2)
legend('All Points','Valid Points')
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Input Arguments
scanObj — Lidar scan readings
lidarScan object

Lidar scan readings, specified as a lidarScan object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "MaximumRange",5

Parent — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of "Parent" and an axes object in
which the laser scan is drawn. By default, the laser scan is plotted in the currently active axes.

MaximumRange — Range of laser scan
scan.RangeMax (default) | scalar
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Range of laser scan, specified as the comma-separated pair consisting of "MaximumRange" and a
scalar. When you specify this name-value pair argument, the minimum and maximum x-axis and the
maximum y-axis limits are set based on specified value. The minimum y-axis limit is automatically
determined by the opening angle of the laser scanner.

This name-value pair only works when you input scanMsg as the laser scan.

Outputs
linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique identifiers, which
you can use to query and modify properties of a specific chart line.

Version History
Introduced in R2015a

See Also
transformScan
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isMotionValid
Check if path between states is valid

Syntax
[isValid,lastValid] = isMotionValid(manipSV,startConfig,goalConfig)

Description
[isValid,lastValid] = isMotionValid(manipSV,startConfig,goalConfig) checks if the
path between two states is valid by interpolating between states using the state validator manipSV.
The function also returns the last valid state along the path lastValid.

Examples

Validate State and Motion Manipulator State Space

Generate states to form a path, validate motion between states, and check for self-collisions and
environmental collisions with objects in your world. The manipulatorStateSpace object
represents the joint configuration space of your rigid body tree robot model, and can sample states,
calculate distances, and enforce state bounds. The manipulatorCollisionBodyValidator object
validates the state and motion based on the collision bodies in your robot model and any obstacles in
your environment.

Load Robot Model

Use the loadrobot function to access predefined robot models. This example uses the Quanser
QArm™ robot and joint configurations are specified as row vectors.

robot = loadrobot("quanserQArm",DataFormat="row");
figure(Visible="on")
show(robot);
xlim([-0.5 0.5])
ylim([-0.5 0.5])
zlim([-0.25 0.75])
hold on
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Configure State Space and State Validation

Create the state space and state validator from the robot model.

ss = manipulatorStateSpace(robot);
sv = manipulatorCollisionBodyValidator(ss,SkippedSelfCollisions="parent");

Set the validation distance to 0.05, which is based on the distance normal between two states. You
can configure the validator to ignore self collisions to improve the speed of validation, but must
consider whether your robot model has the proper joint limit settings set to ensure it does not collide
with itself.

sv.ValidationDistance = 0.05;
sv.IgnoreSelfCollision = true;

Place collision objects in the robot environment. Set the Environment property of the collision
validator object using a cell array of objects.

box = collisionBox(0.1,0.1,0.5); % XYZ Lengths
box.Pose = trvec2tform([0.2 0.2 0.5]); % XYZ Position
sphere = collisionSphere(0.25); % Radius
sphere.Pose = trvec2tform([-0.2 -0.2 0.5]); % XYZ Position
env = {box sphere};
sv.Environment = env;

Visualize the environment.

for i = 1:length(env)
    show(env{i})
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end
view(60,10)

Plan Path

Start with the home configuration as the first point on the path.

rng(0); % Repeatable results
start = homeConfiguration(robot);
path = start;
idx = 1;

Plan a path using these steps, in a loop:

• Sample a nearby goal configuration, using the Gaussian distribution, by specifying the standard
deviation for each joint angle.

• Check if the sampled goal state is valid.
• If the sampled goal state is valid, check if the motion between states is valid and, if so, add it to

the path.

for i = 2:25
    goal = sampleGaussian(ss,start,0.25*ones(4,1));
    validState = isStateValid(sv,goal);
    
    if validState % If state is valid, check motion between states.
        [validMotion,~] = isMotionValid(sv,path(idx,:),goal);
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        if validMotion % If motion is valid, add to path.
            path = [path; goal];
            idx = idx + 1;
        end
    end
end

Visualize Path

After generating the path of valid motions, visualize the robot motion. Because you sampled random
states near the home configuration, you should see the arm move around that initial configuration.

To visualize the path of the end effector in 3-D, get the transformation, relative to the base world
frame at each point. Store the points as an xyz translation vector. Plot the path of the end effector.

eePose = nan(3,size(path,1));

for i = 1:size(path,1)
    show(robot,path(i,:),PreservePlot=false);
    eePos(i,:) = tform2trvec(getTransform(robot,path(i,:),"END-EFFECTOR")); % XYZ translation vector
    plot3(eePos(:,1),eePos(:,2),eePos(:,3),"-b",LineWidth=2)
    drawnow
end
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Input Arguments
manipSV — Manipulator state validator
manipulatorCollisionBodyValidator object

Manipulator state validator, specified as a manipulatorCollisionBodyValidator object, which is
a subclass of nav.StateValidator. The state validator contains properties that determine the
behavior of this function and isStateValid.

startConfig — Initial robot configuration
n-element row vector of joint positions

Initial robot configuration, specified as an n-element row vector of joint positions for the
rigidBodyTree robot model. n is the number of nonfixed joints in the robot model.
Data Types: double

goalConfig — Desired robot configuration
n-element row vector of joint positions

Desired robot configuration, specified as an n-element row vector of joint positions for the
rigidBodyTree robot model. n is the number of nonfixed joints in the robot model.
Data Types: double
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Output Arguments
isValid — Valid states
m-element logical column vector

Valid states, returned as an m-element logical column vector.
Data Types: logical

lastValid — Final valid state along each path
n-element row vector | m-by-n matrix

Final valid state along each path, returned as an n-element row vector or m-by-n matrix. n is the
number of nonfixed joints in the robot model.. m is the number of paths validated. Each row contains
the final valid state along the associated path.
Data Types: single | double

Version History
Introduced in R2021b

See Also
Objects
rigidBodyTree | manipulatorStateSpace | workspaceGoalRegion | manipulatorRRT |
manipulatorCollisionBodyValidator

Functions
isStateValid | sampleUniform | sampleGaussian | interpolate | distance |
enforceStateBounds
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isStateValid
Check if state is valid

Syntax
isValid = isStateValid(manipSV,states)

Description
isValid = isStateValid(manipSV,states) checks if given states, or joint configurations, are
valid for the rigid body tree robot model specified by the state validator manipSV. This object
function checks for self-collisions and collisions with the environment based on the properties of the
state validator.

Examples

Validate State and Motion Manipulator State Space

Generate states to form a path, validate motion between states, and check for self-collisions and
environmental collisions with objects in your world. The manipulatorStateSpace object
represents the joint configuration space of your rigid body tree robot model, and can sample states,
calculate distances, and enforce state bounds. The manipulatorCollisionBodyValidator object
validates the state and motion based on the collision bodies in your robot model and any obstacles in
your environment.

Load Robot Model

Use the loadrobot function to access predefined robot models. This example uses the Quanser
QArm™ robot and joint configurations are specified as row vectors.

robot = loadrobot("quanserQArm",DataFormat="row");
figure(Visible="on")
show(robot);
xlim([-0.5 0.5])
ylim([-0.5 0.5])
zlim([-0.25 0.75])
hold on
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Configure State Space and State Validation

Create the state space and state validator from the robot model.

ss = manipulatorStateSpace(robot);
sv = manipulatorCollisionBodyValidator(ss,SkippedSelfCollisions="parent");

Set the validation distance to 0.05, which is based on the distance normal between two states. You
can configure the validator to ignore self collisions to improve the speed of validation, but must
consider whether your robot model has the proper joint limit settings set to ensure it does not collide
with itself.

sv.ValidationDistance = 0.05;
sv.IgnoreSelfCollision = true;

Place collision objects in the robot environment. Set the Environment property of the collision
validator object using a cell array of objects.

box = collisionBox(0.1,0.1,0.5); % XYZ Lengths
box.Pose = trvec2tform([0.2 0.2 0.5]); % XYZ Position
sphere = collisionSphere(0.25); % Radius
sphere.Pose = trvec2tform([-0.2 -0.2 0.5]); % XYZ Position
env = {box sphere};
sv.Environment = env;

Visualize the environment.

for i = 1:length(env)
    show(env{i})
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end
view(60,10)

Plan Path

Start with the home configuration as the first point on the path.

rng(0); % Repeatable results
start = homeConfiguration(robot);
path = start;
idx = 1;

Plan a path using these steps, in a loop:

• Sample a nearby goal configuration, using the Gaussian distribution, by specifying the standard
deviation for each joint angle.

• Check if the sampled goal state is valid.
• If the sampled goal state is valid, check if the motion between states is valid and, if so, add it to

the path.

for i = 2:25
    goal = sampleGaussian(ss,start,0.25*ones(4,1));
    validState = isStateValid(sv,goal);
    
    if validState % If state is valid, check motion between states.
        [validMotion,~] = isMotionValid(sv,path(idx,:),goal);
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        if validMotion % If motion is valid, add to path.
            path = [path; goal];
            idx = idx + 1;
        end
    end
end

Visualize Path

After generating the path of valid motions, visualize the robot motion. Because you sampled random
states near the home configuration, you should see the arm move around that initial configuration.

To visualize the path of the end effector in 3-D, get the transformation, relative to the base world
frame at each point. Store the points as an xyz translation vector. Plot the path of the end effector.

eePose = nan(3,size(path,1));

for i = 1:size(path,1)
    show(robot,path(i,:),PreservePlot=false);
    eePos(i,:) = tform2trvec(getTransform(robot,path(i,:),"END-EFFECTOR")); % XYZ translation vector
    plot3(eePos(:,1),eePos(:,2),eePos(:,3),"-b",LineWidth=2)
    drawnow
end
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Input Arguments
manipSV — Manipulator state validator
manipulatorCollisionBodyValidator object

Manipulator state validator, specified as a manipulatorCollisionBodyValidator object, which is
a subclass of nav.StateValidator. The state validator contains properties that determine the
behavior of this function and isMotionValid.

states — Robot states in joint space
m-by-n matrix

Robot states in the joint space, specified as an m-by-n matrix of joint positions. m is the total number
of states and n is the number of nonfixed joints in the rigidBodyTree robot model.
Data Types: double

Output Arguments
isValid — Validity of state
m-element vector of logical scalars

Validity of input states returned as an m-element vector of logical scalars, where m is the total
number of states. A state is valid, 1 or true, if it does not result in self-collisions, collisions with the
environment, and it is within state bounds. Otherwise the state is invalid, 0 or false.
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Data Types: logical

Version History
Introduced in R2021b

See Also
Objects
rigidBodyTree | manipulatorStateSpace | workspaceGoalRegion | manipulatorRRT

Functions
isMotionValid | sampleUniform | sampleGaussian | interpolate | distance
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derivative
Time derivative of manipulator model states

Syntax
stateDot = derivative(taskMotionModel,state,refPose,refVel)
stateDot = derivative(taskMotionModel,state,refPose, refVel,fExt)

stateDot = derivative(jointMotionModel,state,cmds)
stateDot = derivative(jointMotionModel,state,cmds,fExt)

Description
stateDot = derivative(taskMotionModel,state,refPose,refVel) computes the time
derivative of the motion model based on the current state and motion commands using a task-space
model.

stateDot = derivative(taskMotionModel,state,refPose, refVel,fExt) computes the
time derivative based on the current state, motion commands, and any external forces on the
manipulator using a task space model.

stateDot = derivative(jointMotionModel,state,cmds) computes the time derivative of
the motion model based on the current state and motion commands using a joint-space model.

stateDot = derivative(jointMotionModel,state,cmds,fExt) computes the time derivative
based on the current state, motion commands, and any external forces on the manipulator using a
joint-space model.

Examples

Create Joint-Space Motion Model

This example shows how to create and use a jointSpaceMotionModel object for a manipulator
robot in joint-space.

Create the Robot

robot = loadrobot("kinovaGen3","DataFormat","column","Gravity",[0 0 -9.81]);

Set Up the Simulation

Set the timespan to be 1 s with a timestep size of 0.01 s. Set the initial state to be the robots, home
configuration with a velocity of zero.

tspan = 0:0.01:1;
initialState = [homeConfiguration(robot); zeros(7,1)];

Define the a reference state with a target position, zero velocity, and zero acceleration.

targetState = [pi/4; pi/3; pi/2; -pi/3; pi/4; -pi/4; 3*pi/4; zeros(7,1); zeros(7,1)];

3 Methods

3-230



Create the Motion Model

Model the system with computed torque control and error dynamics defined by a moderately fast step
response with 5% overshoot.

motionModel = jointSpaceMotionModel("RigidBodyTree",robot);
updateErrorDynamicsFromStep(motionModel,.3,.05);

Simulate the Robot

Use the derivative function of the model as the input to the ode45 solver to simulate the behavior
over 1 second.

[t,robotState] = ode45(@(t,state)derivative(motionModel,state,targetState),tspan,initialState);

Plot the Response

Plot the positions of all the joints actuating to their target state. Joints with a higher displacement
between the starting position and the target position actuate to the target at a faster rate than those
with a lower displacement. This leads to an overshoot, but all of the joints have the same settling
time.

figure
plot(t,robotState(:,1:motionModel.NumJoints));
hold all;
plot(t,targetState(1:motionModel.NumJoints)*ones(1,length(t)),"--");
title("Joint Position (Solid) vs Reference (Dashed)");
xlabel("Time (s)")
ylabel("Position (rad)");
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Create Task-Space Motion Model

This example shows how to create and use a taskSpaceMotionModel object for a manipulator robot
arm in task-space.

Create the Robot

robot = loadrobot("kinovaGen3","DataFormat","column","Gravity",[0 0 -9.81]);

Set Up the Simulation

Set the time span to be 1 second with a timestep size of 0.02 seconds. Set the initial state to the home
configuration of the robot, with a velocity of zero.

tspan = 0:0.02:1;
initialState = [homeConfiguration(robot);zeros(7,1)];

Define a reference state with a target position and zero velocity.

refPose = trvec2tform([0.6 -.1 0.5]);
refVel = zeros(6,1);

Create the Motion Model

Model the behavior as a system under proportional-derivative (PD) control.
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motionModel = taskSpaceMotionModel("RigidBodyTree",robot,"EndEffectorName","EndEffector_Link");

Simulate the Robot

Simulate the behavior over 1 second using a stiff solver to more efficiently capture the robot
dynamics. Using ode15s enables higher precision around the areas with a high rate of change.

[t,robotState] = ode15s(@(t,state)derivative(motionModel,state,refPose,refVel),tspan,initialState);

Plot the Response

Plot the robot's initial position and mark the target with an X.

figure
show(robot,initialState(1:7));
hold all
plot3(refPose(1,4),refPose(2,4),refPose(3,4),"x","MarkerSize",20)

Observe the response by plotting the robot in a 5 Hz loop.

r = rateControl(5);
for i = 1:size(robotState,1)
    show(robot,robotState(i,1:7)',"PreservePlot",false);
    waitfor(r);
end
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Input Arguments
taskMotionModel — taskSpaceMotionModel object
taskSpaceMotionModel object

taskSpaceMotionModel object, which defines the properties of the motion model.

jointMotionModel — jointSpaceMotionModel object
jointSpaceMotionModel object

jointSpaceMotionModel object, which defines the properties of the motion model.

state — Joint positions and velocities
1-by-2n-element vector

Joint positions and velocities represented as a 2n-element vector, specified as [q; qDot]. n is the
number of non-fixed joints in the associated rigidBodyTree of the motionModel. q, represents the
position of each joint, specified in radians. qDot represents the velocity of each joint, specified in
radians per second.

refPose — Robot pose
4-by-4 matrix

The reference pose of the end effector in the task-space in meters, specified as an 4-by-4
homogeneous transformation matrix.
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refVel — Joint velocities
six-element row vector

The reference velocities of the end effector in the task space, specified as a six-element vector of real
values, specified as [omega v]. omega represents a row vector of three angular velocities about the x,
y, and z axes, specified in radians per second, and v represents a row vector of three linear velocities
along the x, y, and z axes, specified in meters per second.

cmds — Control commands indicating desired motion
2-by-n matrix | 3-by-n matrix

Control commands indicating desired motion. The dimensions of cmds depend on the MotionType
property of the motion model:

• "PDControl" — 2-by-n matrix, [qRef; qRefDot]. The first and second rows represent joint
positions and joint velocities, respectively.

• "ComputedTorqueControl" — 3-by-n matrix, [qRef; qRefDot; qRefDDot]. The first,
second, and third rows represent joint positions, joint velocities, and joint accelerations
respectively.

• "IndependentJointMotion" — 3-by-n matrix, [qRef; qRefDot; qRefDDot]. The first,
second, and third rows represent joint positions, joint velocities, and joint accelerations
respectively.

Note that jointSpaceMotionModel supports all three MotionType listed above, but
taskSpaceMotionModel only supports "PDControl" MotionType.

fExt — Joint positions and velocities
m-element vector

External forces, specified as an m-element vector, where m is the number of bodies in the associated
rigidBodyTree object.

Output Arguments
stateDot — Time derivative of current state
2-by-n matrix

Time derivative based on current state and specified control commands, returned as a 2-by-n matrix
of real values, [qDot; qDDot], where qDot is an n-element row vector of joint velocities, and qDDot is
an n-element row vector of joint accelerations. n is the number of joints in the associated
rigidBodyTree of the motionModel.

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
Classes
jointSpaceMotionModel | taskSpaceMotionModel
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interpolate
Interpolate states along path from RRT

Syntax
interpPath = interpolate(rrt,path)
interpPath = interpolate(rrt,path,numInterp)

Description
interpPath = interpolate(rrt,path) interpolates states between each adjacent configuration
in the path based on the ValidationDistance property of the manipulator rapidly exploring random
tree (RRT) planner rrt.

interpPath = interpolate(rrt,path,numInterp) specifies the number of interpolations
between adjacent configurations.

Examples

Plan Path for Manipulator Robot Using RRT

Use the manipulatorRRT object to plan a path for a rigid body tree robot model in an environment
with obstacles. Visualize the planned path with interpolated states.

Load a robot model into the workspace. Use the KUKA LBR iiwa© manipulator arm.

robot = loadrobot("kukaIiwa14","DataFormat","row");

Generate the environment for the robot. Create collision objects and specify their poses relative to
the robot base. Visualize the environment.

env = {collisionBox(0.5, 0.5, 0.05) collisionSphere(0.3)};
env{1}.Pose(3, end) = -0.05;
env{2}.Pose(1:3, end) = [0.1 0.2 0.8];

show(robot);
hold on
show(env{1})
show(env{2})
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Create the RRT planner for the robot model.

rrt = manipulatorRRT(robot,env);
rrt.SkippedSelfCollisions = "parent";

Specify a start and a goal configuration.

startConfig = [0.08 -0.65 0.05 0.02 0.04 0.49 0.04];
goalConfig =  [2.97 -1.05 0.05 0.02 0.04 0.49 0.04];

Plan the path. Due to the randomness of the RRT algorithm, set the rng seed for repeatability.

rng(0)
path = plan(rrt,startConfig,goalConfig);

Visualize the path. To add more intermediate states, interpolate the path. By default, the
interpolate object function uses the value of ValidationDistance property to determine the
number of intermediate states. The for loop shows every 20th element of the interpolated path.

interpPath = interpolate(rrt,path);
clf
for i = 1:20:size(interpPath,1)
    show(robot,interpPath(i,:));
    hold on
end
show(env{1})
show(env{2})
hold off
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Input Arguments
rrt — Manipulator RRT planner
manipulatorRRT object

Manipulator RRT planner, specified as a manipulatorRRT object. This planner is for a specific rigid
body tree robot model stored as a rigidBodyTree object.

path — Planned path in joint space
r-by-n matrix of joint configurations

Planned path in joint space, specified as an r-by-n matrix of joint configurations, where r is the
number of configurations in the path, and n is the number of nonfixed joints in the rigidBodyTree
robot model.
Data Types: double

numInterp — Number of interpolations between each configuration
positive integer

Number of interpolations between each configuration, specified as a positive integer.
Data Types: double
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Output Arguments
interpPath — Interpolated path in joint space
r-by-n matrix of joint configurations

Planned path in joint space, specified as an r-by-n matrix of joint configurations, where r is the
number of configurations in the path and n is the number of nonfixed joints in the rigidBodyTree
robot model.
Data Types: double

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
manipulatorRRT | rigidBodyTree | interactiveRigidBodyTree |
analyticalInverseKinematics

Functions
plan | shorten

Topics
“Pick and Place Using RRT for Manipulators”
“Pick-and-Place Workflow Using RRT Planner and Stateflow for MATLAB”
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plan
Plan path using RRT for manipulators

Syntax
path = plan(rrt,startConfig,goalConfig)
path = plan(rrt,startConfig,goalRegion)
[path,solnInfo] = plan( ___ )

Description
path = plan(rrt,startConfig,goalConfig) plans a path between the specified start and goal
configurations using the manipulator rapidly exploring random trees (RRT) planner rrt.

path = plan(rrt,startConfig,goalRegion) plans a path between the specified start and a
goal region as a workspaceGoalRegion object

[path,solnInfo] = plan( ___ ) also returns solution info about the results from the RRT planner
using the previous input arguments.

Examples

Plan Path for Manipulator Robot Using RRT

Use the manipulatorRRT object to plan a path for a rigid body tree robot model in an environment
with obstacles. Visualize the planned path with interpolated states.

Load a robot model into the workspace. Use the KUKA LBR iiwa© manipulator arm.

robot = loadrobot("kukaIiwa14","DataFormat","row");

Generate the environment for the robot. Create collision objects and specify their poses relative to
the robot base. Visualize the environment.

env = {collisionBox(0.5, 0.5, 0.05) collisionSphere(0.3)};
env{1}.Pose(3, end) = -0.05;
env{2}.Pose(1:3, end) = [0.1 0.2 0.8];

show(robot);
hold on
show(env{1})
show(env{2})
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Create the RRT planner for the robot model.

rrt = manipulatorRRT(robot,env);
rrt.SkippedSelfCollisions = "parent";

Specify a start and a goal configuration.

startConfig = [0.08 -0.65 0.05 0.02 0.04 0.49 0.04];
goalConfig =  [2.97 -1.05 0.05 0.02 0.04 0.49 0.04];

Plan the path. Due to the randomness of the RRT algorithm, set the rng seed for repeatability.

rng(0)
path = plan(rrt,startConfig,goalConfig);

Visualize the path. To add more intermediate states, interpolate the path. By default, the
interpolate object function uses the value of ValidationDistance property to determine the
number of intermediate states. The for loop shows every 20th element of the interpolated path.

interpPath = interpolate(rrt,path);
clf
for i = 1:20:size(interpPath,1)
    show(robot,interpPath(i,:));
    hold on
end
show(env{1})
show(env{2})
hold off
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Plan Path To A Workspace Goal Region

Specify a goal region in your workspace and plan a path within those bounds. The
workspaceGoalRegion object defines the bounds on the XYZ-position and ZYX Euler orientation of
the robot end effector. The manipulatorRRT object plans a path based on that goal region and
samples random poses within the bounds.

Load an existing robot model as a rigidBodyTree object.

robot = loadrobot("kinovaGen3", "DataFormat", "row");
ax = show(robot);
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Create Path Planner

Create a rapidly-exploring random tree (RRT) path planner for the robot. This example uses an empty
environment, but this workflow also works well with cluttered environments. You can add collision
objects to the environment like the collisionBox or collisionMesh object.

planner = manipulatorRRT(robot,{});
planner.SkippedSelfCollisions="parent";

Define Goal Region

Create a workspace goal region using the end-effector body name of the robot.

Define the goal region parameters for your workspace. The goal region includes a reference pose,
XYZ-position bounds, and orientation limits on the ZYX Euler angles. This example specifies bounds
on the XY-plane in meters and allows rotation about the Z-axis in radians.

goalRegion = workspaceGoalRegion(robot.BodyNames{end}); 
goalRegion.ReferencePose = trvec2tform([0.5 0.5 0.2]);
goalRegion.Bounds(1, :) = [-0.2 0.2];    % X Bounds
goalRegion.Bounds(2, :) = [-0.2 0.2];    % Y Bounds
goalRegion.Bounds(4, :) = [-pi/2 pi/2];  % Rotation about the Z-axis

You can also apply a fixed offset to all poses sampled within the region. This offset can account for
grasping tools or variations in dimensions within your workspace. For this example, apply a fixed
transformation that places the end effector 5 cm above the workspace.
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goalRegion.EndEffectorOffsetPose = trvec2tform([0 0 0.05]);
hold on
show(goalRegion);

Plan Path To Goal Region

Plan a path to the goal region from the robot's home configuration. Due to the randomness in the RRT
algorithm, this example sets the rng seed to ensure repeatable results.

rng(0)
path = plan(planner,homeConfiguration(robot),goalRegion);

Show the robot executing the path. To visualize a more realistic path, interpolate points between path
configurations.

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot,interpConfigurations(i,:),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1],...
        'CameraViewAngle',5)
  
    drawnow
end
hold off
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Adjust End-effector Pose

Notice that the robot arm approaches the workspace from the bottom. To flip the orientation of the
final position, add a pi rotation to the Y-axis for the reference pose.

goalRegion.EndEffectorOffsetPose = ... 
    goalRegion.EndEffectorOffsetPose*eul2tform([0 pi 0],"ZYX");

Replan the path and visualize the robot motion again. The robot now approaches from the top.

hold on
show(goalRegion);
path = plan(planner,homeConfiguration(robot),goalRegion);

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot, interpConfigurations(i, :),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1])
    drawnow;
end
hold off
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Input Arguments
rrt — Manipulator RRT planner
manipulatorRRT object

Manipulator RRT planner, specified as a manipulatorRRT object. This planner is for a specific rigid
body tree robot model stored as a rigidBodyTree object.

startConfig — Initial robot configuration
n-element vector of joint positions

Initial robot configuration, specified as an n-element vector of joint positions for the rigidBodyTree
object stored in the RRT planner rrt. n is the number of nonfixed joints in the robot model.
Data Types: double

goalConfig — Desired robot configuration
n-element vector of joint positions

Desired robot configuration, specified as an n-element vector of joint positions for the
rigidBodyTree object stored in the RRT planner rrt. n is the number of nonfixed joints in the robot
model.
Data Types: double

goalRegion — Workspace goal region
workspaceGoalRegion object
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Workspace goal region, specified as a workspaceGoalRegion object.

The workspaceGoalRegion object defines the bounds on the end-effector pose and the sample
object function returns random poses to add to the RRT tree. Set the WorkspaceGoalRegionBias
property to change the probability of sampling a state within the goal region.

Output Arguments
path — Planned path in joint space
r-by-n matrix of joint configurations

Planned path in joint space, returned as an r-by-n matrix of joint configurations, where r is the
number of configurations in the path, and n is the number of nonfixed joints in the rigidBodyTree
robot model.
Data Types: double

solnInfo — Solution information from planner
structure

Solution information from planner, returned as a structure with these fields:

• IsPathFound — A logical indicating if a path was found
• ExitFlag — An integer indicating why the planner terminated:

• 1 — Goal configuration reached
• 2 — Maximum number of iterations reached

Data Types: struct

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
manipulatorRRT | rigidBodyTree | interactiveRigidBodyTree |
analyticalInverseKinematics

Functions
interpolate | shorten

Topics
“Pick and Place Using RRT for Manipulators”
“Pick-and-Place Workflow Using RRT Planner and Stateflow for MATLAB”
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shorten
Trim edges to shorten path from RRT

Syntax
shortPath = shorten(rrt,path,numIter)

Description
shortPath = shorten(rrt,path,numIter) trims edges to shorten the specified path path by
running a randomized shortening strategy for a specified number of iterations numIter.

Input Arguments
rrt — Manipulator RRT planner
manipulatorRRT object

Manipulator RRT planner, specified as a manipulatorRRT object. This planner is for a specific rigid
body tree robot model stored as a rigidBodyTree object.

path — Planned path in joint space
r-by-n matrix of joint configurations

Planned path in joint space, specified as an r-by-n matrix of joint configurations, where r is the
number of configurations in the path, and n is the number of nonfixed joints in the rigidBodyTree
robot model.
Data Types: double

numIter — Number of iterations to attempt shortening the path
positive integer

Number of iterations to attempt shortening path, specified as a positive integer.
Data Types: double

Output Arguments
shortPath — Planned path in joint space
r-by-n matrix of joint configurations

Planned path in joint space, returned as an r-by-n matrix of joint configurations, where r is the
number of configurations in the path, and n is the number of nonfixed joints in the rigidBodyTree
robot model.
Data Types: double

Version History
Introduced in R2020b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Objects
manipulatorRRT | rigidBodyTree | interactiveRigidBodyTree |
analyticalInverseKinematics

Functions
plan | interpolate | shorten

Topics
“Pick and Place Using RRT for Manipulators”
“Pick-and-Place Workflow Using RRT Planner and Stateflow for MATLAB”

3 Methods

3-250



distance
Distance between states

Syntax
dist = distance(manipSS,state1,state2)

Description
dist = distance(manipSS,state1,state2) calculates the distance between one or more initial
states and one more final states.

Input Arguments
manipSS — Manipulator state space
manipulatorStateSpace object

Manipulator state space, specified as a manipulatorStateSpace object, which is a subclass of
nav.StateSpace.

state1 — Initial state position
n-element row vector | m-by-n matrix

Initial state position, specified as ann-element row vector or m-by-n matrix. n is the dimension of the
state space specified in the NumStateVariables property of manipSS. m is the number of initial
state positions.

The sizes of state1 and state2 determine the size of the dist output:

State Vectors and Distances

state1 Size state2 Size dist Size
n-element row vector n-element row vector scalar
n-element row vector m-by-n matrix m-element column vector
m-by-n matrix n-element row vector m-element column vector
m-by-n matrix m-by-n matrix m-element column vector

state2 — Final state position
n-element vector | m-by-n matrix of row vectors

Final state position, specified as a n-element row vector or m-by-n matrix. n is the dimension of the
state space specified in the NumStateVariables property of manipSS. m is the number of initial
state positions.

The sizes of state1 and state2 determine the size of the dist output:
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State Vectors and Distances

state1 Size state2 Size dist Size
n-element row vector n-element row vector scalar
n-element row vector m-by-n matrix m-element column vector
m-by-n matrix n-element row vector m-element column vector
m-by-n matrix m-by-n matrix m-element column vector

Output Arguments
dist — Distance between two states
numeric scalar | m-element column vector

Distance between two states, returned as a numeric scalar or m-element column vector. This distance
calculation is the main component in evaluating the costs of paths. For prismatic joints, the distance
between two states is the Euclidean norm of the difference between the state vectors. For revolute
joints with infinite bounds, the difference in joint values is calculated using angdiff.

For revolute joints, distances measure joint differences in radians. For prismatic joints, distances
measure displacement in meters.

The sizes of state1 and state2 determine the size of output dist:

State Vectors and Distances

state1 Size state2 Size dist Size
n-element row vector n-element row vector scalar
n-element row vector m-by-n matrix m-element column vector
m-by-n matrix n-element row vector m-element column vector
m-by-n matrix m-by-n matrix m-element column vector

Version History
Introduced in R2021b

See Also
nav.StateSpace | nav.StateValidator | stateSpaceSE2 | stateSpaceDubins |
stateSpaceReedsShepp

Topics
“Create Custom State Space for Path Planning” (Navigation Toolbox)
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enforceStateBounds
Limit state to state space bounds

Syntax
boundedState = enforceStateBounds(manipSS,state)

Description
boundedState = enforceStateBounds(manipSS,state) limits the specified state to the
bounds specified by the StateBounds property of the state space object, manipSS, and returns the
bounded state, boundedState.

Input Arguments
manipSS — Manipulator state space
manipulatorStateSpace object

Manipulator state space, specified as a manipulatorStateSpace object, which is a subclass of
nav.StateSpace.

state — State position
n-element row vector | m-by-n matrix

State position, specified as an n-element row vector or an m-by-n matrix. n is the dimension of the
state space specified in the NumStateVariables property of manipSS. m is the number of initial
state positions.

Output Arguments
boundedState — State position with enforced state bounds
n-element row vector | m-by-n matrix

State position with enforced state bounds, returned as an n-element vector or m-by-n matrix. n is the
dimension of the state space specified in the NumStateVariables property of manipSS. m is the
number of initial state positions.

Version History
Introduced in R2021b

See Also
Objects
manipulatorStateSpace | rigidBodyTree | manipulatorCollisionBodyValidator |
manipulatorRRT | workspaceGoalRegion
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Functions
isStateValid | isMotionValid | sampleUniform | sampleGaussian | interpolate |
distance
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interpolate
Interpolate between states

Syntax
interpStates = interpolate(manipSS,state1,state2,ratios)

Description
interpStates = interpolate(manipSS,state1,state2,ratios) interpolates between two
states in your state space using the specified ratio values ratios.

Input Arguments
manipSS — Manipulator state space
manipulatorStateSpace object

Manipulator state space, specified as a manipulatorStateSpace object, which is a subclass of
nav.StateSpace.

state1 — Initial state position
n-element row vector

Initial state position, specified as an n-element row vector. n is the dimension of the state space
specified in the NumStateVariables property of manipSS.

state2 — Final state position
n-element row vector

Final state position, specified as an n-element row vector. n is the dimension of the state space
specified in the NumStateVariables property of manipSS.

ratios — Ratio values for interpolating along path
m-element vector values in range [0 1]

Ratio values for interpolating along the path, specified as an m-element vector of values in range [0
1]. These ratios determine the distance of the interpolated state from state1.

Output Arguments
interpStates — Interpolated states
m-by-n matrix

Interpolated states, returned as an m-by-n matrix. m is the length of ratios and n is the dimension
of the state space specified in the NumStateVariables property of manipSS.

Version History
Introduced in R2021b
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See Also
Objects
manipulatorStateSpace | rigidBodyTree | manipulatorCollisionBodyValidator |
manipulatorRRT | workspaceGoalRegion

Functions
isStateValid | isMotionValid | sampleUniform | sampleGaussian | enforceStateBounds |
distance
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sampleGaussian
Sample state using Gaussian distribution

Syntax
states = sampleGaussian(manipSS,meanState,stdDev)
states = sampleGaussian(manipSS,meanState,stdDev,numSamples)

Description
states = sampleGaussian(manipSS,meanState,stdDev) samples a state in the state space
manipSS from a Gaussian (normal) distribution centered on the mean meanState with the standard
deviation, stdDev.

states = sampleGaussian(manipSS,meanState,stdDev,numSamples) samples the number
of multiple states specified by numSamples.

Examples

Validate State and Motion Manipulator State Space

Generate states to form a path, validate motion between states, and check for self-collisions and
environmental collisions with objects in your world. The manipulatorStateSpace object
represents the joint configuration space of your rigid body tree robot model, and can sample states,
calculate distances, and enforce state bounds. The manipulatorCollisionBodyValidator object
validates the state and motion based on the collision bodies in your robot model and any obstacles in
your environment.

Load Robot Model

Use the loadrobot function to access predefined robot models. This example uses the Quanser
QArm™ robot and joint configurations are specified as row vectors.

robot = loadrobot("quanserQArm",DataFormat="row");
figure(Visible="on")
show(robot);
xlim([-0.5 0.5])
ylim([-0.5 0.5])
zlim([-0.25 0.75])
hold on
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Configure State Space and State Validation

Create the state space and state validator from the robot model.

ss = manipulatorStateSpace(robot);
sv = manipulatorCollisionBodyValidator(ss,SkippedSelfCollisions="parent");

Set the validation distance to 0.05, which is based on the distance normal between two states. You
can configure the validator to ignore self collisions to improve the speed of validation, but must
consider whether your robot model has the proper joint limit settings set to ensure it does not collide
with itself.

sv.ValidationDistance = 0.05;
sv.IgnoreSelfCollision = true;

Place collision objects in the robot environment. Set the Environment property of the collision
validator object using a cell array of objects.

box = collisionBox(0.1,0.1,0.5); % XYZ Lengths
box.Pose = trvec2tform([0.2 0.2 0.5]); % XYZ Position
sphere = collisionSphere(0.25); % Radius
sphere.Pose = trvec2tform([-0.2 -0.2 0.5]); % XYZ Position
env = {box sphere};
sv.Environment = env;

Visualize the environment.

for i = 1:length(env)
    show(env{i})
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end
view(60,10)

Plan Path

Start with the home configuration as the first point on the path.

rng(0); % Repeatable results
start = homeConfiguration(robot);
path = start;
idx = 1;

Plan a path using these steps, in a loop:

• Sample a nearby goal configuration, using the Gaussian distribution, by specifying the standard
deviation for each joint angle.

• Check if the sampled goal state is valid.
• If the sampled goal state is valid, check if the motion between states is valid and, if so, add it to

the path.

for i = 2:25
    goal = sampleGaussian(ss,start,0.25*ones(4,1));
    validState = isStateValid(sv,goal);
    
    if validState % If state is valid, check motion between states.
        [validMotion,~] = isMotionValid(sv,path(idx,:),goal);
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        if validMotion % If motion is valid, add to path.
            path = [path; goal];
            idx = idx + 1;
        end
    end
end

Visualize Path

After generating the path of valid motions, visualize the robot motion. Because you sampled random
states near the home configuration, you should see the arm move around that initial configuration.

To visualize the path of the end effector in 3-D, get the transformation, relative to the base world
frame at each point. Store the points as an xyz translation vector. Plot the path of the end effector.

eePose = nan(3,size(path,1));

for i = 1:size(path,1)
    show(robot,path(i,:),PreservePlot=false);
    eePos(i,:) = tform2trvec(getTransform(robot,path(i,:),"END-EFFECTOR")); % XYZ translation vector
    plot3(eePos(:,1),eePos(:,2),eePos(:,3),"-b",LineWidth=2)
    drawnow
end
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Input Arguments
manipSS — Manipulator state space
manipulatorStateSpace object

Manipulator state space, specified as a manipulatorStateSpace object, which is a subclass of
nav.StateSpace.

meanState — Mean state position
n-element row vector

Mean state position, specified as an n-element row vector, where n is the dimension of the state space
specified in the NumStateVariables property of manipSS.

stdDev — Standard deviation around mean state
n-element row vector

Standard deviation around the mean state, specified as an n-element row vector. Each element
corresponds to an element in meanState.

numSamples — Number of samples
1 (default) | positive integer

Number of samples, specified as a positive integer.
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Output Arguments
states — Sampled states from state space
n-element row vector | m-by-n matrix

Sampled states from the state space, returned as an n-element row vector or m-by-n matrix. n is the
dimension of the state space specified in the NumStateVariables property of manipSS. m is the
number of samples specified in numSamples. All states are sampled within the bounds specified by
the StateBounds property of manipSS.

Version History
Introduced in R2021b

See Also
Objects
manipulatorStateSpace | rigidBodyTree | manipulatorCollisionBodyValidator |
manipulatorRRT | workspaceGoalRegion

Functions
isStateValid | isMotionValid | sampleUniform | interpolate | distance |
enforceStateBounds
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sampleUniform
Sample state using uniform distribution

Syntax
states = sampleUniform(manipSS)
states = sampleUniform(manipSS,numSamples)

Description
states = sampleUniform(manipSS) samples a single random state within the bounds of the state
space manipSS using a uniform distribution.

states = sampleUniform(manipSS,numSamples) samples the number of states specified by
numSamples.

Input Arguments
manipSS — Manipulator state space
manipulatorStateSpace object

Manipulator state space, specified as a manipulatorStateSpace object, which is a subclass of
nav.StateSpace.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer.

Output Arguments
states — Sampled states from state space
n-element row vector | m-by-n matrix

Sampled states from the state space, returned as an n-element row vector or m-by-n matrix. n is the
dimension of the state space specified in the NumStateVariables property of manipSS. m is the
number of samples specified in numSamples. All states are sampled within the bounds specified by
the StateBounds property of manipSS.

Version History
Introduced in R2021b

See Also
Objects
manipulatorStateSpace | rigidBodyTree | manipulatorCollisionBodyValidator |
manipulatorRRT | workspaceGoalRegion

 sampleUniform

3-263



Functions
isStateValid | isMotionValid | sampleGaussian | interpolate | distance |
enforceStateBounds

Topics
“Create Custom State Space for Path Planning” (Navigation Toolbox)
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derivative
Time derivative of vehicle state

Syntax
stateDot = derivative(motionModel,state,cmds)

Description
stateDot = derivative(motionModel,state,cmds) returns the current state derivative,
stateDot, as a three-element vector [xDot yDot thetaDot] if the motion model is a
bicycleKinematics, differentialDriveKinematics, or unicycleKinematics object. It
returns state as a four-element vector, [xDot yDot thetaDot psiDot], if the motion model is a
ackermannKinematics object. xDot and yDot refer to the vehicle velocity, specified in meters per
second. thetaDot is the angular velocity of the vehicle heading and psiDot is the angular velocity of
the vehicle steering, both specified in radians per second.

Examples

Simulate Different Kinematic Models for Mobile Robots

This example shows how to model different robot kinematics models in an environment and compare
them.

Define Mobile Robots with Kinematic Constraints

There are a number of ways to model the kinematics of mobile robots. All dictate how the wheel
velocities are related to the robot state: [x y theta], as xy-coordinates and a robot heading,
theta, in radians.

Unicycle Kinematic Model

The simplest way to represent mobile robot vehicle kinematics is with a unicycle model, which has a
wheel speed set by a rotation about a central axle, and can pivot about its z-axis. Both the differential-
drive and bicycle kinematic models reduce down to unicycle kinematics when inputs are provided as
vehicle speed and vehicle heading rate and other constraints are not considered.

unicycle = unicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate");

Differential-Drive Kinematic Model

The differential drive model uses a rear driving axle to control both vehicle speed and head rate. The
wheels on the driving axle can spin in both directions. Since most mobile robots have some interface
to the low-level wheel commands, this model will again use vehicle speed and heading rate as input to
simplify the vehicle control.

diffDrive = differentialDriveKinematics("VehicleInputs","VehicleSpeedHeadingRate");

To differentiate the behavior from the unicycle model, add a wheel speed velocity constraint to the
differential-drive kinematic model
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diffDrive.WheelSpeedRange = [-10 10]*2*pi;

Bicycle Kinematic Model

The bicycle model treats the robot as a car-like model with two axles: a rear driving axle, and a front
axle that turns about the z-axis. The bicycle model works under the assumption that wheels on each
axle can be modeled as a single, centered wheel, and that the front wheel heading can be directly set,
like a bicycle.

bicycle = bicycleKinematics("VehicleInputs","VehicleSpeedHeadingRate","MaxSteeringAngle",pi/8);

Other Models

The Ackermann kinematic model is a modified car-like model that assumes Ackermann steering. In
most car-like vehicles, the front wheels do not turn about the same axis, but instead turn on slightly
different axes to ensure that they ride on concentric circles about the center of the vehicle's turn.
This difference in turning angle is called Ackermann steering, and is typically enforced by a
mechanism in actual vehicles. From a vehicle and wheel kinematics standpoint, it can be enforced by
treating the steering angle as a rate input.

carLike = ackermannKinematics;

Set up Simulation Parameters

These mobile robots will follow a set of waypoints that is designed to show some differences caused
by differing kinematics.

waypoints = [0 0; 0 10; 10 10; 5 10; 11 9; 4 -5];
% Define the total time and the sample rate
sampleTime = 0.05;               % Sample time [s]
tVec = 0:sampleTime:20;          % Time array

initPose = [waypoints(1,:)'; 0]; % Initial pose (x y theta)

Create a Vehicle Controller

The vehicles follow a set of waypoints using a Pure Pursuit controller. Given a set of waypoints, the
robot current state, and some other parameters, the controller outputs vehicle speed and heading
rate.

% Define a controller. Each robot requires its own controller
controller1 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller2 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);
controller3 = controllerPurePursuit("Waypoints",waypoints,"DesiredLinearVelocity",3,"MaxAngularVelocity",3*pi);

Simulate the Models Using an ODE Solver

The models are simulated using the derivative function to update the state. This example uses an
ordinary differential equation (ODE) solver to generate a solution. Another way would be to update
the state using a loop, as shown in “Path Following for a Differential Drive Robot”.

Since the ODE solver requires all outputs to be provided as a single output, the pure pursuit
controller must be wrapped in a function that outputs the linear velocity and heading angular velocity
as a single output. An example helper, exampleHelperMobileRobotController, is used for that
purpose. The example helper also ensures that the robot stops when it is within a specified radius of
the goal.
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goalPoints = waypoints(end,:)';
goalRadius = 1;

ode45 is called once for each type of model. The derivative function computes the state outputs with
initial state set by initPose. Each derivative accepts the corresponding kinematic model object, the
current robot pose, and the output of the controller at that pose.

% Compute trajectories for each kinematic model under motion control
[tUnicycle,unicyclePose] = ode45(@(t,y)derivative(unicycle,y,exampleHelperMobileRobotController(controller1,y,goalPoints,goalRadius)),tVec,initPose);
[tBicycle,bicyclePose] = ode45(@(t,y)derivative(bicycle,y,exampleHelperMobileRobotController(controller2,y,goalPoints,goalRadius)),tVec,initPose);
[tDiffDrive,diffDrivePose] = ode45(@(t,y)derivative(diffDrive,y,exampleHelperMobileRobotController(controller3,y,goalPoints,goalRadius)),tVec,initPose);

Plot Results

The results of the ODE solver can be easily viewed on a single plot using plotTransforms to
visualize the results of all trajectories at once.

The pose outputs must first be converted to indexed matrices of translations and quaternions.

unicycleTranslations = [unicyclePose(:,1:2) zeros(length(unicyclePose),1)];
unicycleRot = axang2quat([repmat([0 0 1],length(unicyclePose),1) unicyclePose(:,3)]);

bicycleTranslations = [bicyclePose(:,1:2) zeros(length(bicyclePose),1)];
bicycleRot = axang2quat([repmat([0 0 1],length(bicyclePose),1) bicyclePose(:,3)]);

diffDriveTranslations = [diffDrivePose(:,1:2) zeros(length(diffDrivePose),1)];
diffDriveRot = axang2quat([repmat([0 0 1],length(diffDrivePose),1) diffDrivePose(:,3)]);

Next, the set of all transforms can be plotted and viewed from the top. The paths of the unicycle,
bicycle, and differential-drive robots are red, blue, and green, respectively. To simplify the plot, only
show every tenth output.

figure
plot(waypoints(:,1),waypoints(:,2),"kx-","MarkerSize",20);
hold all
plotTransforms(unicycleTranslations(1:10:end,:),unicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","r");
plotTransforms(bicycleTranslations(1:10:end,:),bicycleRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","b");
plotTransforms(diffDriveTranslations(1:10:end,:),diffDriveRot(1:10:end,:),'MeshFilePath','groundvehicle.stl',"MeshColor","g");
view(0,90)
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Simulate Ackermann Kinematic Model with Steering Angle Constraints

Simulate a mobile robot model that uses Ackermann steering with constraints on its steering angle.
During simulation, the model maintains maximum steering angle after it reaches the steering limit. To
see the effect of steering saturation, you compare the trajectory of two robots, one with the
constraints on the steering angle and the other without any steering constraints.

Define the Model

Define the Ackermann kinematic model. In this car-like model, the front wheels are a given distance
apart. To ensure that they turn on concentric circles, the wheels have different steering angles. While
turning, the front wheels receive the steering input as rate of change of steering angle.

carLike = ackermannKinematics; 

Set Up Simulation Parameters

Set the mobile robot to follow a constant linear velocity and receive a constant steering rate as input.
Simulate the constrained robot for a longer period to demonstrate steering saturation.

velo = 5;    % Constant linear velocity 
psidot = 1;  % Constant left steering rate 

% Define the total time and sample rate 
sampleTime = 0.05;                  % Sample time [s]
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timeEnd1 = 1.5;                     % Simulation end time for unconstrained robot 
timeEnd2 = 10;                      % Simulation end time for constrained robot 
tVec1 = 0:sampleTime:timeEnd1;      % Time array for unconstrained robot 
tVec2 = 0:sampleTime:timeEnd2;      % Time array for constrained robot  

initPose = [0;0;0;0];               % Initial pose (x y theta phi) 

Create Options Structure for ODE Solver

In this example, you pass an options structure as argument to the ODE solver. The options
structure contains the information about the steering angle limit. To create the options structure,
use the Events option of odeset and the created event function, detectSteeringSaturation.
detectSteeringSaturation sets the maximum steering angle to 45 degrees.

For a description of how to define detectSteeringSaturation, see Define Event Function at the
end of this example. 

options = odeset('Events',@detectSteeringSaturation);

Simulate Model Using ODE Solver

Next, you use the derivative function and an ODE solver, ode45, to solve the model and generate
the solution.

% Simulate the unconstrained robot 
[t1,pose1] = ode45(@(t,y)derivative(carLike,y,[velo psidot]),tVec1,initPose);

% Simulate the constrained robot 
[t2,pose2,te,ye,ie] = ode45(@(t,y)derivative(carLike,y,[velo psidot]),tVec2,initPose,options);

Detect Steering Saturation

When the model reaches the steering limit, it registers a timestamp of the event. The time it took to
reach the limit is stored in te.

if te < timeEnd2
    str1 = "Steering angle limit was reached at ";
    str2 = " seconds";
    comp = str1 + te + str2; 
    disp(comp)
end 

Steering angle limit was reached at 0.785 seconds

Simulate Constrained Robot with New Initial Conditions

Now use the state of the constrained robot before termination of integration as initial condition for
the second simulation. Modify the input vector to represent steering saturation, that is, set the
steering rate to zero.

saturatedPsiDot = 0;             % Steering rate after saturation 
cmds = [velo saturatedPsiDot];   % Command vector 
tVec3 = te:sampleTime:timeEnd2;  % Time vector 
pose3 = pose2(length(pose2),:); 
[t3,pose3,te3,ye3,ie3] = ode45(@(t,y)derivative(carLike,y,cmds), tVec3,pose3, options);

Plot the Results

Plot the trajectory of the robot using plot and the data stored in pose.

 derivative

3-269



figure(1)
plot(pose1(:,1),pose1(:,2),'--r','LineWidth',2); 
hold on; 
plot([pose2(:,1); pose3(:,1)],[pose2(:,2);pose3(:,2)],'g'); 
title('Trajectory X-Y')
xlabel('X')
ylabel('Y') 
legend('Unconstrained robot','Constrained Robot','Location','northwest')
axis equal

The unconstrained robot follows a spiral trajectory with decreasing radius of curvature while the
constrained robot follows a circular trajectory with constant radius of curvature after the steering
limit is reached.

Define Event Function

Set the event function such that integration terminates when 4th state, theta, is equal to maximum
steering angle.

function [state,isterminal,direction] = detectSteeringSaturation(t,y)
  maxSteerAngle = 0.785;               % Maximum steering angle (pi/4 radians)
  state(4) = (y(4) - maxSteerAngle);   % Saturation event occurs when the 4th state, theta, is equal to the max steering angle    
  isterminal(4) = 1;                   % Integration is terminated when event occurs 
  direction(4) = 0;                    % Bidirectional termination 
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end

Input Arguments
motionModel — Mobile kinematic model object
ackermannKinematics object | bicycleKinematics object | differentialDriveKinematics
object | unicycleKinematics object

The mobile kinematics model object, which defines the properties of the motion model, specified as
an ackermannKinematics, bicycleKinematics, differentialDriveKinematics, or a
unicycleKinematics object.

state — Current vehicle state
three-element vector | four-element vector

Current vehicle state returned as a three-element or four-element vector, depending on the
motionModel input:

• unicycleKinematics –– [x y theta]
• bicycleKinematics –– [x y theta]
• differentialDriveKinematics –– [x y theta]
• ackermannKinematics –– [x y theta psi]

x and y refer to the vehicle position, specified in meters per second. theta is the vehicle heading and
psi is the vehicle steering angle, both specified in radians per second.

cmds — Input commands to motion model
two-element vector

Input commands to the motion model, specified as a two-element vector that depends on the motion
model.

For ackermannKinematics objects, the commands are [v psiDot].

For other motion models, the VehicleInputs property of motionModel determines the command
vector:

• "VehicleSpeedSteeringAngle" –– [v psiDot]
• "VehicleSpeedHeadingRate" –– [v omegaDot]
• "WheelSpeedHeadingRate" (unicycleKinematics only) –– [wheelSpeed omegaDot]
• "WheelSpeeds" (differentialDriveKinematics only) –– [wheelL wheelR]

v is the vehicle velocity in the direction of motion in meters per second. psiDot is the steering angle
rate in radians per second. omegaDot is the angular velocity at the rear axle. wwheelL and wheelR
are the left and right wheel speeds respectively.

Output Arguments
stateDot — State derivative of current state
three-element vector | four-element vector
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The current state derivative returned as a three-element or four-element vector, depending on the
motionModel input:

• unicycleKinematics –– [xDot yDot thetaDot]
• bicycleKinematics –– [xDot yDot thetaDot]
• differentialDriveKinematics –– [xDot yDot thetaDot]
• ackermannKinematics –– [xDot yDot thetaDot psiDot]

xDot and yDot refer to the vehicle velocity, specified in meters per second. thetaDot is the angular
velocity of the vehicle heading and psiDot is the angular velocity of the vehicle steering, both
specified in radians per second.

Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
ackermannKinematics | bicycleKinematics | differentialDriveKinematics |
unicycleKinematics

Topics
“Mobile Robot Kinematics Equations”
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findpath
Find path between start and goal points on roadmap

Syntax
xy = findpath(prm,start,goal)

Description
xy = findpath(prm,start,goal) finds an obstacle-free path between start and goal locations
within prm, a roadmap object that contains a network of connected points.

If any properties of prm change, or if the roadmap is not created, update is called.

Input Arguments
prm — Roadmap path planner
mobileRobotPRM object

Roadmap path planner, specified as a mobileRobotPRM object.

start — Start location of path
1-by-2 vector

Start location of path, specified as a 1-by-2 vector representing an [x y] pair.
Example: [0 0]

goal — Final location of path
1-by-2 vector

Final location of path, specified as a 1-by-2 vector representing an [x y] pair.
Example: [10 10]

Output Arguments
xy — Waypoints for a path between start and goal
n-by-2 column vector

Waypoints for a path between start and goal, specified as a n-by-2 column vector of [x y] pairs,
where n is the number of waypoints. These pairs represent the solved path from the start and goal
locations, given the roadmap from the prm input object.

Version History
Introduced in R2019b
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See Also
mobileRobotPRM | show | update
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show
Show map, roadmap, and path

Syntax
show(prm)
show(prm,Name,Value)

Description
show(prm) shows the map and the roadmap, specified as prm in a figure window. If no roadmap
exists, update is called. If a path is computed before calling show, the path is also plotted on the
figure.

show(prm,Name,Value) sets the specified Value to the property Name.

Input Arguments
prm — Roadmap path planner
mobileRobotPRM object

Roadmap path planner, specified as a mobileRobotPRM object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Path','off'

Parent — Axes to plot the map
Axes object | UIAxes object

Axes to plot the map specified as a comma-separated pair consisting of "Parent" and either an Axes
or UIAxesobject. See axes or uiaxes.

Map — Map display option
"on" (default) | "off"

Map display option, specified as the comma-separated pair consisting of "Map" and either "on" or
"off".

Roadmap — Roadmap display option
"on" (default) | "off"

Roadmap display option, specified as the comma-separated pair consisting of "Roadmap" and either
"on" or "off".
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Path — Path display option
"on" (default) | "off"

Path display option, specified as "on" or "off". This controls whether the computed path is shown in
the plot.

Version History
Introduced in R2019b

See Also
mobileRobotPRM | findpath | update

Topics
“Path Following for a Differential Drive Robot”
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update
Create or update roadmap

Syntax
update(prm)

Description
update(prm) creates a roadmap if called for the first time after creating the mobileRobotPRM
object, prm. Subsequent calls of update recreate the roadmap by resampling the map. update
creates the new roadmap using the Map, NumNodes, and ConnectionDistance property values
specified in prm.

Input Arguments
prm — Roadmap path planner
mobileRobotPRM object

Roadmap path planner, specified as a mobileRobotPRM object.

Version History
Introduced in R2019b

See Also
mobileRobotPRM | findpath | show
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findNearestNeighbors
Find nearest neighbors of a point in point cloud

Syntax
[indices,dists] = findNearestNeighbors(ptCloud,point,K)
[indices,dists] = findNearestNeighbors( ___ ,Name,Value)

Description
[indices,dists] = findNearestNeighbors(ptCloud,point,K) returns the indices for the
K-nearest neighbors of a query point in the input point cloud. ptCloud can be an unorganized or
organized point cloud. The K-nearest neighbors of the query point are computed by using the Kd-tree
based search algorithm. This function requires a Computer Vision Toolbox™ license.

[indices,dists] = findNearestNeighbors( ___ ,Name,Value) specifies options using one or
more name-value arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y z]

Query point, specified as a three-element vector of form [x y z].

K — Number of nearest neighbors
positive integer

Number of nearest neighbors, specified as a positive integer.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNearestNeighbors(ptCloud,point,k,'Sort',true)

Sort — Sort indices
false (default) | true

Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.
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MaxLeafChecks — Number of leaf nodes to check
Inf (default) | integer

Number of leaf nodes to check, specified as a comma-separated pair consisting of 'MaxLeafChecks'
and an integer. When you set this value to Inf, the entire tree is searched. When the entire tree is
searched, it produces exact search results. Increasing the number of leaf nodes to check increases
accuracy, but reduces efficiency.

Note The name-value argument 'MaxLeafChecks' is valid only with Kd-tree based search method.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains K linear indices of the
nearest neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its nearest neighbors.

Version History
Introduced in R2022a

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

See Also
Objects
pointCloud

Functions
findNeighborsInRadius | findPointsInROI | removeInvalidPoints | select
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findNeighborsInRadius
Find neighbors within a radius of a point in the point cloud

Syntax
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius)
[indices,dists] = findNeighborsInRadius( ___ ,Name,Value)

Description
[indices,dists] = findNeighborsInRadius(ptCloud,point,radius) returns the indices
of neighbors within a radius of a query point in the input point cloud. ptCloud can be an
unorganized or organized point cloud. The neighbors within a radius of the query point are computed
by using the Kd-tree based search algorithm. This function requires a Computer Vision Toolbox
license.

[indices,dists] = findNeighborsInRadius( ___ ,Name,Value) specifies options using one
or more name-value pair arguments in addition to the input arguments in the preceding syntaxes.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

point — Query point
three-element vector of form [x y z]

Query point, specified as a three-element vector of form [x y z].

radius — Search radius
scalar

Search radius, specified as a scalar. The function finds the neighbors within the specified radius
around a query point in the input point cloud.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: findNeighborsInRadius(ptCloud,point,radius,'Sort',true)

Sort — Sort indices
false (default) | true
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Sort indices, specified as a comma-separated pair of 'Sort' and a logical scalar. When you set Sort
to true, the returned indices are sorted in the ascending order based on the distance from a query
point. To turn off sorting, set Sort to false.

MaxLeafChecks — Number of leaf nodes
Inf (default) | integer

Number of leaf nodes, specified as a comma-separated pair consisting of 'MaxLeafChecks' and an
integer. When you set this value to Inf, the entire tree is searched. When the entire tree is searched,
it produces exact search results. Increasing the number of leaf nodes to check increases accuracy,
but reduces efficiency.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
radial neighbors stored in the point cloud.

dists — Distances to query point
column vector

Distances to query point, returned as a column vector. The vector contains the Euclidean distances
between the query point and its radial neighbors.

Version History
Introduced in R2022a

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• For code generation in non-host platforms, the value for 'MaxLeafChecks' must be set to the
default value Inf. If you specify values other than Inf, the function generates a warning and
automatically assigns the default value for 'MaxLeafChecks'.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

Usage notes and limitations:
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• For GPU code generation, the 'MaxLeafChecks' name-value pair option is ignored.

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findPointsInROI | removeInvalidPoints | select
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findPointsInROI
Find points within a region of interest in the point cloud

Syntax
indices = findPointsInROI(ptCloud,roi)

Description
indices = findPointsInROI(ptCloud,roi) returns the points within a region of interest (ROI)
in the input point cloud. The points within the specified ROI are obtained using a Kd-tree based
search algorithm. This function requires a Computer Vision Toolbox license.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

roi — Region of interest
six-element vector of form [xmin xmax ymin ymax zmin zmax]

Region of interest, specified as a six-element vector of form [xmin xmax ymin ymax zmin zmax],
where:

• xmin and xmax are the minimum and the maximum limits along the x-axis respectively.
• ymin and ymax are the minimum and the maximum limits along the y-axis respectively.
• zmin and zmax are the minimum and the maximum limits along the z-axis respectively.

Output Arguments
indices — Indices of stored points
column vector

Indices of stored points, returned as a column vector. The vector contains the linear indices of the
ROI points stored in the point cloud.

Version History
Introduced in R2022a

References
[1] Muja, M. and David G. Lowe. "Fast Approximate Nearest Neighbors with Automatic Algorithm

Configuration". In VISAPP International Conference on Computer Vision Theory and
Applications. 2009. pp. 331–340.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

-

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | removeInvalidPoints | select
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removeInvalidPoints
Remove invalid points from point cloud

Syntax
[ptCloudOut,indices] = removeInvalidPoints(ptCloud)

Description
[ptCloudOut,indices] = removeInvalidPoints(ptCloud) removes points with Inf or NaN
coordinate values from point cloud and returns the indices of valid points. This function requires a
Computer Vision Toolbox license.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

Output Arguments
ptCloudOut — Point cloud with points removed
pointCloud object

Point cloud, returned as a pointCloud object with Inf or NaN coordinates removed.

Note The output is always an unorganized (X-by-3) point cloud. If the input ptCloud is an organized
point cloud (M-by-N-by-3), the function returns the output as an unorganized point cloud.

indices — Indices of valid points
vector

Indices of valid points in the point cloud, specified as a vector.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
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See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI | select
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select
Select points in point cloud

Syntax
ptCloudOut = select(ptCloud,indices)
ptCloudOut = select(ptCloud,row,column)
ptCloudOut = select( ___ ,'OutputSize',outputSize)

Description
ptCloudOut = select(ptCloud,indices) returns a pointCloud object containing only the
points that are selected using linear indices. This function requires a Computer Vision Toolbox
license.

ptCloudOut = select(ptCloud,row,column) returns a pointCloud object containing only the
points that are selected using row and column subscripts. This syntax applies only if the input is an
organized point cloud data of size M-by-N-by-3.

ptCloudOut = select( ___ ,'OutputSize',outputSize) returns the selected points as a
pointCloud object of size specified by outputSize.

Input Arguments
ptCloud — Point cloud
pointCloud object

Point cloud, specified as a pointCloud object.

indices — Indices of selected points
vector

Indices of selected points, specified as a vector.

row — Row indices
vector

Row indices, specified as a vector. This argument applies only if the input is an organized point cloud
data of size M-by-N-by-3.

column — Column indices
vector

Column indices, specified as a vector. This argument applies only if the input is an organized point
cloud data of size M-by-N-by-3.

outputSize — Size of output point cloud
'selected' (default) | 'full'

Size of the output point cloud, ptCloudOut, specified as 'selected' or 'full'.
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• If the size is 'selected', then the output contains only the selected points from the input point
cloud, ptCloud.

• If the size is 'full', then the output is same size as the input point cloud ptCloud. Cleared
points are filled with NaN and the color is set to [0 0 0].

Output Arguments
ptCloudOut — Selected point cloud
pointCloud object

Point cloud, returned as a pointCloud object.

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
Objects
pointCloud

Functions
findNearestNeighbors | findNeighborsInRadius | findPointsInROI |
removeInvalidPoints
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reset
Reset Rate object

Syntax
reset(rate)

Description
reset(rate) resets the state of the Rate object, including the elapsed time and all statistics about
previous periods. reset is useful if you want to run multiple successive loops at the same rate, or if
the object is created before the loop is executed.

Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired rate and other
information about the execution. See rateControlrateControl for more information.

Examples

Run Loop At Fixed Rate and Reset Rate Object

Create a rateControl object for running at 20 Hz.

r = rateControl(2);

Start a loop and control operation using the Rate object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Display the rateControl object properties after loop operation.

disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 15.0119
          LastPeriod: 0.4971

Reset the object to restart the time statistics.

3 Methods

3-290



reset(r);
disp(r)

  rateControl with properties:

         DesiredRate: 2
       DesiredPeriod: 0.5000
       OverrunAction: 'slip'
    TotalElapsedTime: 0.0042
          LastPeriod: NaN

Version History
Introduced in R2016a

See Also
rateControl | rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate”
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statistics
Statistics of past execution periods

Syntax
stats = statistics(rate)

Description
stats = statistics(rate) returns statistics of previous periods of code execution. stats is a
struct with these fields: Periods, NumPeriods, AveragePeriod, StandardDeviation, and
NumOverruns.

Here is a sample execution graphic using the default setting, 'slip', for the OverrunAction
property in the Rate object. See OverrunAction for more information on overrun code execution.

The output of statistics is:

stats = 

              Periods: [0.7 0.11 0.7 0.11]
           NumPeriods: 4
        AveragePeriod: 0.09
    StandardDeviation: 0.0231
          NumOverruns: 2

Input Arguments
rate — Rate object
handle

Rate object, specified as an object handle. This object contains the information for the DesiredRate
and other info about the execution. See rateControlrateControl for more information.

Output Arguments
stats — Time execution statistics
structure
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Time execution statistics, returned as a structure. This structure contains the following fields:

• Period — All time periods (returned in seconds) used to calculate statistics as an indexed array.
stats.Period(end) is the most recent period.

• NumPeriods — Number of elements in Periods
• AveragePeriod — Average time in seconds
• StandardDeviation — Standard deviation of all periods in seconds, centered around the mean

stored in AveragePeriod
• NumOverruns — Number of periods with overrun

Examples

Get Statistics From Rate Object Execution

Create a rateControl object for running at 20 Hz.

r = rateControl(20);

Start a loop and control operation using the rateControl object.

for i = 1:30
    % Your code goes here
    waitfor(r);
end

Get Rate object statistics after loop operation.

stats = statistics(r)

stats = struct with fields:
              Periods: [0.0709 0.0452 0.0444 0.0454 0.0629 0.0417 0.0445 ... ]
           NumPeriods: 30
        AveragePeriod: 0.0501
    StandardDeviation: 0.0083
          NumOverruns: 0

Version History
Introduced in R2016a

See Also
rateControl | rateControl | waitfor

Topics
“Execute Code at a Fixed-Rate”
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waitfor
Package: robotics

Pause code execution to achieve desired execution rate

Syntax
waitfor(rate)
numMisses = waitfor(rate)

Description
waitfor(rate) pauses execution until the code reaches the desired execution rate. The function
accounts for the time that is spent executing code between waitfor calls.

numMisses = waitfor(rate) returns the number of iterations missed while executing code
between calls.

Examples

Run Loop at Fixed Rate

Create a rate object that runs at 1 Hz.

r = rateControl(1);

Start a loop using the rateControl object inside to control the loop execution. Reset the object
prior to the loop execution to reset timer. Print the iteration and time elapsed.

reset(r)
for i = 1:10
    time = r.TotalElapsedTime;
    fprintf('Iteration: %d - Time Elapsed: %f\n',i,time)
    waitfor(r);
end

Iteration: 1 - Time Elapsed: 0.003010
Iteration: 2 - Time Elapsed: 1.006561
Iteration: 3 - Time Elapsed: 2.004330
Iteration: 4 - Time Elapsed: 3.010003
Iteration: 5 - Time Elapsed: 4.001062
Iteration: 6 - Time Elapsed: 5.003656
Iteration: 7 - Time Elapsed: 6.012790
Iteration: 8 - Time Elapsed: 7.011572
Iteration: 9 - Time Elapsed: 8.008164
Iteration: 10 - Time Elapsed: 9.014031

Each iteration executes at a 1-second interval.
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Input Arguments
rate — Rate object
handle

Rate object, specified as a handle. This object contains the information for the desired rate and other
information about the execution. See rateControl for more information.

Output Arguments
numMisses — Number of missed task executions
scalar

Number of missed task executions, returned as a scalar. waitfor returns the number of times the
task was missed in the Rate object based on the LastPeriod time. For example, if the desired rate
is 1 Hz and the last period was 3.2 seconds, numMisses returns 3.

Version History
Introduced in R2016a

See Also
rateControl | rateControl

Topics
“Execute Code at a Fixed-Rate”
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addCollision
Add collision geometry to rigid body

Syntax
addCollision(body,type,parameters)
addCollision(body,collisionObj)
addCollision( ___ ,tform)

Description
addCollision(body,type,parameters) adds a collision geometry of the specified type type and
geometric parameters parameters to the specified rigid body body.

addCollision(body,collisionObj) adds a collision geometry object to the rigid body body,
specified as one of these collision objects:

• collisionBox
• collisionCylinder
• collisionSphere
• collisionMesh

This syntax uses the Pose property of the specified collision object to transform the collision vertices
into the rigid body frame.

addCollision( ___ ,tform) specifies a transformation for the collision geometry relative to the
body frame in addition to any combination of input arguments from previous syntaxes.

Examples

Add Collision Meshes and Check Collisions for Manipulator Robot Arm

Load a robot model and modify the collision meshes. Clear existing collision meshes, add simple
collision object primitives, and check whether certain configurations are in collision.

Load Robot Model

Load a preconfigured robot model into the workspace using the loadrobot function. This model
already has collision meshes specified for each body. Iterate through all the rigid body elements and
clear the existing collision meshes. Confirm that the existing meshes are gone.

robot = loadrobot('kukaIiwa7','DataFormat','column');

for i = 1:robot.NumBodies
    clearCollision(robot.Bodies{i})
end

show(robot,'Collisions','on','Visuals','off');
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Add Collision Cylinders

Iteratively add a collision cylinder to each body. Skip some bodies for this specific model, as they
overlap and always collide with the end effector (body 10).

collisionObj = collisionCylinder(0.05,0.25);

for i = 1:robot.NumBodies
    if i > 6 && i < 10
        % Skip these bodies.
    else
        addCollision(robot.Bodies{i},collisionObj)
    end
end

show(robot,'Collisions','on','Visuals','off');
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Check for Collisions

Generate a series of random configurations. Check whether the robot is in collision at each
configuration. Visualize each configuration that has a collision.

figure
rng(0) % Set random seed for repeatability.
for i = 1:20
    config = randomConfiguration(robot);
    isColliding = checkCollision(robot,config,'SkippedSelfCollisions','parent');
    if isColliding
        show(robot,config,'Collisions','on','Visuals','off');
        title('Collision Detected')
    else
        % Skip non-collisions.
    end
end
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Input Arguments
body — Rigid body
rigidBody object

Rigid body, specified as a rigidBody object.

type — Geometry type for collision geometry
"box" | "cylinder" | "sphere" | "mesh"

Geometry type for collision geometry, specified as a string scalar. The specified type determines the
format of the parameters input.

• "box" — [x y z]
• "cylinder" — [radius length]
• "sphere" — radius
• "mesh" — n-by-3 matrix of vertices or an STL or DAE file name as a string

Data Types: char | string

parameters — Collision geometry parameters
numeric vector | numeric matrix | string scalar

Collision geometry parameters, specified as a numeric vector, numeric matrix, or string scalar. The
type input determines the format of this value.
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• "box" — [x y z]
• "cylinder" — [radius length]
• "sphere" — radius
• "mesh" — n-by-3 matrix of vertices or an STL or DAE file name as a string

Data Types: single | double | char | string

collisionObj — Collision geometry object
collisionBox object | collisionCylinder object | collisionSphere object | collisionMesh
object

Collision geometry object, specified as a collisionBox, collisionCylinder, collisionSphere,
or collisionMesh object.

tform — Transformation of collision geometry
eye(4) (default) | 4-by-4 homogeneous transformation

Transformation of collision geometry, specified as a 4-by-4 homogeneous transformation. If specifying
a collision object for the collisionObj input, this function applies the specified transformation to
the Pose property of the specified collision object to transform the collision vertices into the rigid
body frame.
Data Types: single | double

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
addVisual | checkCollision | clearCollision | clearVisual | show | rigidBodyTree
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addVisual
Add visual geometry data to rigid body

Syntax
addVisual(body,"Mesh",filename)
addVisual(body,"Mesh",filename,tform)

Description
addVisual(body,"Mesh",filename) adds a polygon mesh on top of any current visual geometry
using the specified .stl or .dae file, filename. Multiple visual geometries can be added to a single
body. The coordinate frame is assumed to coincide with the frame of body. You can view the meshes
for an entire rigid body tree using show.

addVisual(body,"Mesh",filename,tform) specifies a homogeneous transformation for the
polygon mesh relative to the body frame.

Input Arguments
body — RigidBody object
handle

RigidBody object, specified as a handle. Create a rigid body object using rigidBody.

filename — Name of mesh file
string scalar | character vector

Name of mesh file, specified as a string scalar or character vector. This file must be a valid .stl
or .dae file.
Data Types: char | string

tform — Polygon mesh transformation
4-by-4 homogeneous transformation

Mesh transformation relative to the body coordinate frame, specified as a 4-by-4 homogeneous
transformation.

Version History
Introduced in R2017b

See Also
addCollision | clearCollision | clearVisual | show | rigidBodyTree
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clearCollision
Clear all attached collision geometries

Syntax
clearCollision(body)

Description
clearCollision(body) clears all collision geometries attached to the specified rigid body object.

Examples

Add Collision Meshes and Check Collisions for Manipulator Robot Arm

Load a robot model and modify the collision meshes. Clear existing collision meshes, add simple
collision object primitives, and check whether certain configurations are in collision.

Load Robot Model

Load a preconfigured robot model into the workspace using the loadrobot function. This model
already has collision meshes specified for each body. Iterate through all the rigid body elements and
clear the existing collision meshes. Confirm that the existing meshes are gone.

robot = loadrobot('kukaIiwa7','DataFormat','column');

for i = 1:robot.NumBodies
    clearCollision(robot.Bodies{i})
end

show(robot,'Collisions','on','Visuals','off');
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Add Collision Cylinders

Iteratively add a collision cylinder to each body. Skip some bodies for this specific model, as they
overlap and always collide with the end effector (body 10).

collisionObj = collisionCylinder(0.05,0.25);

for i = 1:robot.NumBodies
    if i > 6 && i < 10
        % Skip these bodies.
    else
        addCollision(robot.Bodies{i},collisionObj)
    end
end

show(robot,'Collisions','on','Visuals','off');
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Check for Collisions

Generate a series of random configurations. Check whether the robot is in collision at each
configuration. Visualize each configuration that has a collision.

figure
rng(0) % Set random seed for repeatability.
for i = 1:20
    config = randomConfiguration(robot);
    isColliding = checkCollision(robot,config,'SkippedSelfCollisions','parent');
    if isColliding
        show(robot,config,'Collisions','on','Visuals','off');
        title('Collision Detected')
    else
        % Skip non-collisions.
    end
end
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Input Arguments
body — Rigid body
rigidBody object

Rigid body, specified as a rigidBody object.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
addVisual | addCollision | clearCollision | show | rigidBodyTree
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clearVisual
Clear all visual geometries

Syntax
clearVisual(body)

Description
clearVisual(body) clears all visual geometries attached to the given rigid body object.

Input Arguments
body — Rigid body
rigidBody object

Rigid body, specified as a rigidBody object.

Version History
Introduced in R2017b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
addVisual | addCollision | clearCollision | show | rigidBodyTree
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copy
Create a deep copy of rigid body

Syntax
copyObj = copy(bodyObj)

Description
copyObj = copy(bodyObj) creates a copy of the rigid body object with the same properties.

Input Arguments
bodyObj — RigidBody object
handle

RigidBody object, specified as a handle. Create a rigid body object using rigidBody.

Output Arguments
copyObj — RigidBody object
handle

RigidBody object, returned as a handle. Create a rigid body object using rigidBody.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rigidBodyJoint | rigidBodyTree
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copy
Create copy of joint

Syntax
jCopy = copy(jointObj)

Description
jCopy = copy(jointObj) creates a copy of the rigidBodyJoint object with the same
properties.

Input Arguments
jointObj — rigidBodyJoint object
handle

rigidBodyJoint object, specified as a handle.

Output Arguments
jCopy — rigidBodyJoint object
handle

rigidBodyJoint object, returned as a handle. This copy has the same properties.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rigidBodyJoint | rigidBody | rigidBodyTree
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setFixedTransform
Set fixed transform properties of joint

Syntax
setFixedTransform(jointObj,tform)

setFixedTransform(jointObj,dhparams,"dh")
setFixedTransform(jointObj,mdhparams,"mdh")

Description
setFixedTransform(jointObj,tform) sets the JointToParentTransform property of the
rigidBodyJoint object directly with the specified homogenous transformation, tform.

setFixedTransform(jointObj,dhparams,"dh") sets the ChildToJointTransform property
using Denavit-Hartenberg (DH) parameters. The JointToParentTransform property is set to an
identity matrix. DH parameters are given in the order [a alpha d theta].

For revolute joints, the theta input is ignored when specifying the fixed transformation between
joints because that angle is dependent on the joint configuration. For prismatic joints, the d input is
ignored. For more information, see “Rigid Body Tree Robot Model”.

setFixedTransform(jointObj,mdhparams,"mdh") sets the JointToParentTransform
property using modified DH parameters. The ChildToJointTransform property is set to an identity
matrix. Modified DH parameters are given in the order [a alpha d theta].

Examples

Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 3-
311. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;
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Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)
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 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

References

[1] Corke, P. I., and B. Armstrong-Helouvry. “A Search for Consensus among Model Parameters
Reported for the PUMA 560 Robot.” Proceedings of the 1994 IEEE International Conference on
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Robotics and Automation, IEEE Comput. Soc. Press, 1994, pp. 1608–13. DOI.org (Crossref),
doi:10.1109/ROBOT.1994.351360.

Input Arguments
jointObj — rigidBodyJoint object
handle

rigidBodyJoint object, specified as a handle.

tform — Homogeneous transform
4-by-4 matrix

Homogeneous transform, specified as a 4-by-4 matrix. The transform is set to the
ChildToJointTransform property. The JointToParentTransform property is set to an identity
matrix.

dhparams — Denavit-Hartenberg (DH) parameters
four-element vector

Denavit-Hartenberg (DH) parameters, specified as a four-element vector, [a alpha d theta].
These parameters are used to set the ChildToJointTransform property. The
JointToParentTransform property is set to an identity matrix.

The theta input is ignored when specifying the fixed transformation between joints because that
angle is dependent on the joint configuration. For more information, see “Rigid Body Tree Robot
Model”.

mdhparams — Modified Denavit-Hartenberg (DH) parameters
four-element vector

Modified Denavit-Hartenberg (DH) parameters, specified as a four-element vector, [a alpha d
theta]. These parameters are used to set the JointToParentTransform property. The
ChildToJointTransform is set to an identity matrix.

The theta input is ignored when specifying the fixed transformation between joints because that
angle is dependent on the joint configuration. For more information, see “Rigid Body Tree Robot
Model”.

Version History
Introduced in R2016b

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Reading, MA: Addison-Wesley,

1989.

[2] Siciliano, Bruno. Robotics: Modelling, Planning and Control. London: Springer, 2009.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rigidBodyJoint | rigidBody | rigidBodyTree
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addBody
Add body to robot

Syntax
addBody(robot,body,parentname)

Description
addBody(robot,body,parentname) adds a rigid body to the robot object and is attached to the
rigid body parent specified by parentname. The body property defines how this body moves relative
to the parent body.

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each rigidBody object contains a
rigidBodyJoint object and must be added to the rigidBodyTree using addBody.

Create a rigid body tree.

rbtree = rigidBodyTree;

Create a rigid body with a unique name.

body1 = rigidBody('b1');

Create a revolute joint. By default, the rigidBody object comes with a fixed joint. Replace the joint
by assigning a new rigidBodyJoint object to the body1.Joint property.

jnt1 = rigidBodyJoint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid body to.
Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

--------------------
Robot: (1 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           b1         jnt1     revolute             base(0)   
--------------------
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Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 3-
317. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
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setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off
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Reported for the PUMA 560 Robot.” Proceedings of the 1994 IEEE International Conference on
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Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)
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 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')
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subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

body — Rigid body
rigidBody object

Rigid body, specified as a rigidBody object.

parentname — Parent body name
string scalar | character vector

Parent body name, specified as a string scalar or character vector. This parent body must already
exist in the robot model. The new body is attached to this parent body.
Data Types: char | string
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Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | removeBody | replaceBody
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addSubtree
Add subtree to robot

Syntax
addSubtree(robot,parentname,subtree)

Description
addSubtree(robot,parentname,subtree) attaches the robot model, newSubtree, to an existing
robot model, robot, at the body specified by parentname. The subtree base is not added as a body.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
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            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')

subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)
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--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a rigidBodyTree object.

parentname — Parent body name
string scalar | character vector

Parent body name, specified as a string scalar or character vector. This parent body must already
exist in the robot model. The new body is attached to this parent body.
Data Types: char | string

subtree — Subtree robot model
rigidBodyTree object

Subtree robot model, specified as a rigidBodyTree object.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".
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The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | addBody | removeBody | replaceBody
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centerOfMass
Center of mass position and Jacobian

Syntax
com = centerOfMass(robot)
com = centerOfMass(robot,configuration)
[com,comJac] = centerOfMass(robot,configuration)

Description
com = centerOfMass(robot) computes the center of mass position of the robot model at its home
configuration, relative to the base frame.

com = centerOfMass(robot,configuration) computes the center of mass position of the robot
model at the specified joint configuration, relative to the base frame.

[com,comJac] = centerOfMass(robot,configuration) also returns the center of mass
Jacobian, which relates the center of mass velocity to the joint velocities.

Examples

Calculate Center of Mass and Jacobian for Robot Configuration

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Compute the center of mass position and Jacobian at the home configuration of the robot.

[comLocation,comJac] = centerOfMass(lbr);

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the centerOfMass function, set the
DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector
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Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or 'column' .

Output Arguments
com — Center of mass location
[x y z] vector

Center of mass location, returned as an [x y z] vector. The vector describes the location of the
center of mass for the specified configuration relative to the body frame, in meters.

comJac — Center of mass Jacobian
3-by-n matrix

Center of mass Jacobian, returned as a 3-by-n matrix, where n is the robot velocity degrees of
freedom.

Version History
Introduced in R2017a

References
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2008. DOI.org (Crossref),

doi:10.1007/978-1-4899-7560-7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | massMatrix | velocityProduct | gravityTorque
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Topics
“Robot Dynamics”
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checkCollision
Check if robot is in collision

Syntax
[isSelfColliding,selfSeparationDist,selfWitnessPts] = checkCollision(robot,
config)

[isColliding,separationDist,witnessPts] = checkCollision(robot,config,
worldObjects)

[ ___ ] = checkCollision( ___ ,Name,Value)

Description
[isSelfColliding,selfSeparationDist,selfWitnessPts] = checkCollision(robot,
config) checks if the specified rigid body tree robot model robot is in self-collision at the specified
configuration config. Add collision objects to the rigid body tree robot model using the
addCollision function. The checkCollision function also returns the closest separation distance
selfSeparationDist and the witness points selfWitnessPts as points on each body.

The function ignores adjacent bodies when checking for self-collisions.

[isColliding,separationDist,witnessPts] = checkCollision(robot,config,
worldObjects) checks if the specified rigid body tree robot model is in collision with itself or a
specified set of collision objects in the world worldObjects.

[ ___ ] = checkCollision( ___ ,Name,Value) specifies additional options using one or more
name-value pair arguments in addition to any of argument combinations from previous syntaxes.

Examples

Add Collision Meshes and Check Collisions for Manipulator Robot Arm

Load a robot model and modify the collision meshes. Clear existing collision meshes, add simple
collision object primitives, and check whether certain configurations are in collision.

Load Robot Model

Load a preconfigured robot model into the workspace using the loadrobot function. This model
already has collision meshes specified for each body. Iterate through all the rigid body elements and
clear the existing collision meshes. Confirm that the existing meshes are gone.

robot = loadrobot('kukaIiwa7','DataFormat','column');

for i = 1:robot.NumBodies
    clearCollision(robot.Bodies{i})
end

show(robot,'Collisions','on','Visuals','off');
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Add Collision Cylinders

Iteratively add a collision cylinder to each body. Skip some bodies for this specific model, as they
overlap and always collide with the end effector (body 10).

collisionObj = collisionCylinder(0.05,0.25);

for i = 1:robot.NumBodies
    if i > 6 && i < 10
        % Skip these bodies.
    else
        addCollision(robot.Bodies{i},collisionObj)
    end
end

show(robot,'Collisions','on','Visuals','off');
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Check for Collisions

Generate a series of random configurations. Check whether the robot is in collision at each
configuration. Visualize each configuration that has a collision.

figure
rng(0) % Set random seed for repeatability.
for i = 1:20
    config = randomConfiguration(robot);
    isColliding = checkCollision(robot,config,'SkippedSelfCollisions','parent');
    if isColliding
        show(robot,config,'Collisions','on','Visuals','off');
        title('Collision Detected')
    else
        % Skip non-collisions.
    end
end
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Change Self-Collision Checking Behavior

This example shows how to change which rigid body pairs are skipped during self-collision checking
in rigid body trees using the SkippedSelfCollisions name-value argument for checkCollision.

Serial Manipulator Robot

Load a serial manipulator robot represented as a two joint rigid body tree. Since this robot does not
have collision geometries, add some primitive collision geometries.

rbt2j = twoJointRigidBodyTree;
P = [0.05 0.45]; % Geometry parameters for capsules
T = trvec2tform([0.2 0 0]) * eul2tform([0 pi/2 0],"XYZ"); % Transformation parameters for capsules
addCollision(rbt2j.Base,"cylinder",[0.075 0.1],trvec2tform([0 0 0.05]))
addCollision(rbt2j.Bodies{1},"capsule",P,T)
addCollision(rbt2j.Bodies{2},"capsule",P,T)
addCollision(rbt2j.Bodies{3},"box",[0.2 0.05 0.2])

Visualize the robot with collisions on.

show(rbt2j,homeConfiguration(rbt2j),Collisions="on");
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By default, SkippedSelfCollisions is "parent", so self-collision checking skips collisions
between parent and child bodies. Check the parent and child bodies of body2.

body2 = rbt2j.Bodies{2};
rbt2j.BodyNames

ans = 1x3 cell
    {'body1'}    {'body2'}    {'tool'}

body2.Parent.Name

ans = 
'body1'

body2.Children{1}.Name

ans = 
'tool'

This means that "body2" is not checked for collisions against "body1" or "tool".

List the body names of the robot. This shows that in the cell array, "body2", which is stored at index
2, is adjacent to both "body1" at index 1 and "tool" at index 3. Because the skipped collision pairs
have not changed, the SkippedSelfCollisions name-value argument has no effect on the self-
collision checking result for this robot.

rbt2j.BodyNames
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ans = 1x3 cell
    {'body1'}    {'body2'}    {'tool'}

Run collision checking with both SkippedSelfCollisions options to verify that the
SkippedSelfCollisions name-value argument returns the same result for this robot.

checkCollision(rbt2j,homeConfiguration(rbt2j),SkippedSelfCollisions="parent")

ans = logical
   0

checkCollision(rbt2j,homeConfiguration(rbt2j),SkippedSelfCollisions="adjacent")

ans = logical
   0

Parallel Manipulator Robot

Use the exampleHelperCreate2ArmRBT example helper to create a parallel robot comprised of two
one-joint arms.

rbt2arm = exampleHelperCreate2ArmRBT;
show(rbt2arm,homeConfiguration(rbt2arm),Collisions="on");
axis padded
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List the body names of the robot. The skipped body pairs formed by bodies of adjacent indices is
similar to the serial manipulator but without body, "tool".

rbt2arm.BodyNames

ans = 1x2 cell
    {'body1'}    {'body2'}

Check the parent of body1 and the parent of body2. Each body forms a parent-child relationship with
the base, even though they are at adjacent indices.

rbt2arm.Bodies{1}.Parent.Name

ans = 
'base'

rbt2arm.Bodies{2}.Parent.Name

ans = 
'base'

Run collision checking with both SkippedSelfCollisions options.

checkCollision(rbt2arm,homeConfiguration(rbt2arm),SkippedSelfCollisions="parent")

ans = logical
   0

checkCollision(rbt2arm,homeConfiguration(rbt2arm),SkippedSelfCollisions="adjacent")

ans = logical
   1

As expected, when skipping parent-child body pairs during self collision checks, checkCollision
finds no self collisions, but does find a self collision between the "base" and "body2" when skipping
body pairs of adjacent indices.

Input Arguments
robot — Rigid body tree robot model
rigidBodyTree object

Rigid body tree robot model, specified as a rigidBodyTree object. To use the checkCollision
function, the DataFormat property of the rigidBodyTree object must be either 'row' or 'column'.

config — Joint configuration of rigid body tree
n-element numeric vector

Joint configuration of the rigid body tree, specified as an n-element numeric vector, where n is the
number of nonfixed joints in the robot model. Each element of the vector is a specific joint position for
a joint in the robot model.
Data Types: single | double
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worldObjects — List of collision objects in world
{} (default) | cell array of collision objects

List of collision objects in the world, specified as a cell array of collision objects with any combination
of collisionBox, collisionCylinder, collisionSphere, and collisionMesh objects. The
function assumes that the Pose property of each object is relative to the base of the rigid body tree
robot model.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Exhaustive','on' enables exhaustive checking for collisions and causes the function to
calculate all separation distances and witness points.

Exhaustive — Check for all collisions
'off' (default) | 'on'

Exhaustively check for all collisions, specified as the comma-separated pair consisting of
'Exhaustive' and 'on' or 'off'. By default, the function finds the first collision and stops,
returning the separation distances and witness points for incomplete checks as Inf.

If this name-value pair argument is specified as 'on', the function instead continues checking for
collisions until it has exhausted all possibilities.
Data Types: char | string

IgnoreSelfCollision — Skip checking for robot self-collisions
'off' (default) | 'on'

Skip checking for robot self-collisions, specified as the comma-separated pair consisting of
'IgnoreSelfCollision' and 'on' or 'off'. When this argument is enabled, the function ignores
collisions between the collision objects of the rigid body tree robot model bodies and other collision
objects of the same model or its base.

This name-value pair argument affects the size of the separationDist and witnessPts output
arguments.
Data Types: char | string

SkippedSelfCollisions — Body pairs skipped for checking self-collisions
"parent" (default) | "adjacent"

Body pairs skipped for checking self-collisions, specified as either "parent" or "adjacent":

• "parent" — Skip collision checking between child and parent bodies.
• "adjacent" — Skip collision checking between bodies on adjacent indices.

See “Change Self-Collision Checking Behavior” on page 3-331 for more information.
Data Types: char | string
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Output Arguments
Self Collisions

isSelfColliding — Robot configuration is in self-collision
0 | 1

Robot configuration is in self-collision returned as a logical 0 (false) or 1 (true). If the function
returns a value of true for this argument, that means that one of the rigid body collision objects is
touching another collision object in the robot model. Add collision objects to your rigid body tree
robot model using the addCollision function.
Data Types: logical

selfSeparationDist — Minimum separation distance between bodies of robot
(m+1) -by-(m+1) matrix

Minimum separation distance between the bodies of the robot, returned as an (m+1) -by-(m+1)
matrix, where m is the number of bodies. The final row and column correspond to the robot base.
Units are in meters.

If a pair is in collision, the function returns the separation distance for the associated element as NaN.
Data Types: double

selfWitnessPts — Witness points between robot bodies
3(m+1) -by-2(m+1) matrix

Witness points between the robot bodies including the base, returned as an 3(m+1)-by-2(m+1)
matrix, where m is the number of bodies. Witness points are the points on any two bodies that are
closest to one another for a given configuration. The matrix takes the form:

The matrix is divided into 3-by-2 sections that represent the xyz-coordinates of witness point pairs in
the form:

x1 x2
y1 y2
z1 y2

Each section corresponds to a separation distance in the selfSeparationDist output matrix. Use
these equations to determine where the section of the selfWitnessPts matrix that corresponds to a
specific separation distance begins:

Wr = 3Sr − 2

Wc = 2Sc− 1

Where (Sr,Sc) is the index of a separation distance in the separation distance matrix and (Wr,Wc) is
the index in the witness point matrix at which the corresponding witness points begin.

If a pair is in collision, the function returns each coordinate of the witness points for that element as
NaN.
Data Types: double
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World Collisions

isColliding — Robot configuration is in collision
two-element logical vector

Robot configuration is in collision, returned as a two-element logical vector. The first element
indicates whether the robot is in self-collision. The second element indicates whether the robot model
is in collision with any world objects.
Data Types: logical

separationDist — Minimum separation distance between collision objects
(m+1)-by-(m+w+1) matrix

Minimum separation distance between the collision objected, returned as an (m+1)-by-(m+w+1)
matrix, where m is the number of bodies and w is the number of world objects. The first m rows
correspond to the robot bodies, where the (m+1)th row or column index corresponds to the base. The
remaining w columns correspond to the world objects.

The matrix is divided into 3-by-2 sections that represent the xyz-coordinates of witness point pairs in
the form:

x1 x2
y1 y2
z1 y2

Each section corresponds to a separation distance in the separationDist output matrix. Use these
equations to determine where the section of the witnessPts matrix that corresponds to a specific
separation distance begins:

Wr = 3Sr − 2

Wc = 2Sc− 1

Where (Sr,Sc) is the index of a separation distance in the separation distance matrix and (Wr,Wc) is
the index in the witness point matrix at which the corresponding witness points begin.

If a pair is in collision, the function returns each coordinate of the witness points for that element as
NaN.

If a pair is in collision, the function returns the separation distance as NaN.
Dependencies

If you specify the 'IgnoreSelfCollision' name-value pair argument as 'on', then the matrix
does not contain values for the distances between any given body and other bodies in the robot
model.
Data Types: double

witnessPts — Witness points between collision objects
3(m+1)-by-2(m+w+1) matrix

Witness points between collision objects, specified as a 3(m+1)-by-2(m+w+1) matrix, where m is the
number of bodies and w is the number of world objects. Witness points are the points on any two
bodies that are closest to one another for a given configuration. The matrix takes the form:
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[Wr1_1       Wr1_2     ...    Wr1_(N+1)     Wo1_1     Wo1_2      ... W1_M;
 Wr2_1       Wr2_2     ...    Wr2_(N+1)     Wo2_1     Wo2_2      ... W2_M;
 .           .         .      .             .         .          .   .
 .           .         .      .             .         .          .   .
 .           .         .      .             .         .          .   .
 Wr(N+1)_1   Wr(N+1)_2 ...    Wr(N+1)_(N+1) Wo(N+1)_1 Wo(N+1)_2  ... W(N+1)_M]

Each element in the above matrix is a 2-by-3 matrix that gives the nearest [x y z] points on the two
corresponding bodies or world objects. The final row and column correspond to the robot base.

If a pair are in collision, witness points for that element are returned as NaN(3,2).

Dependencies

If the "IgnoreSelfCollision" name-value pair is set to "on", then the matrix contains no Wr
elements.
Data Types: double

Version History
Introduced in R2020b

Alter rigid body tree self-collision checking behavior change and new default self-collision
checking behavior
Behavior change in future release

You can now specify self-collision checking behavior for a rigid body tree robot model by using the
SkippedSelfCollisions name-value argument. Specify SkippedSelfCollisions as "parent"
or "adjacent":

• "parent" — Collision checking ignores self-collisions between parent and child rigid bodies.
• "adjacent" — Collision checking ignores self -collisions between rigid bodies of adjacent indices.

As of R2022b, the default behavior of collision checking is to ignore self-collisions between parent
and child rigid bodies. In previous releases, the default behavior of self-collision checking was to
ignore self-collisions between adjacent rigid bodies. To instead ignore self-collisions between rigid
bodies of adjacent indices, specify SkippedSelfCollisions as "adjacent".

See “Change Self-Collision Checking Behavior” on page 3-331 for more information about how to use
this name-value argument.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")
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To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | addCollision | clearCollision
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copy
Copy robot model

Syntax
newrobot = copy(robot)

Description
newrobot = copy(robot) creates a deep copy of robot with the same properties. Any changes in
newrobot are not reflected in robot.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
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            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')

subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)
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--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

Output Arguments
newrobot — Robot model
rigidBodyTree object

Robot model, returned as a rigidBodyTree object.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.
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See Also
rigidBodyJoint | rigidBody | rigidBodyTree
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externalForce
Compose external force matrix relative to base

Syntax
fext = externalForce(robot,bodyname,wrench)
fext = externalForce(robot,bodyname,wrench,configuration)

Description
fext = externalForce(robot,bodyname,wrench) composes the external force matrix, which
you can use as inputs to inverseDynamics and forwardDynamics to apply an external force,
wrench, to the body specified by bodyname. The wrench input is assumed to be in the base frame.

fext = externalForce(robot,bodyname,wrench,configuration) composes the external
force matrix assuming that wrench is in the bodyname frame for the specified configuration. The
force matrix fext is given in the base frame.

Examples

Compute Forward Dynamics Due to External Forces on Rigid Body Tree Model

Calculate the resultant joint accelerations for a given robot configuration with applied external forces
and forces due to gravity. A wrench is applied to a specific body with the gravity being specified for
the whole robot.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the gravity. By default, gravity is assumed to be zero.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for the lbr robot.

q = homeConfiguration(lbr);

Specify the wrench vector that represents the external forces experienced by the robot. Use the
externalForce function to generate the external force matrix. Specify the robot model, the end
effector that experiences the wrench, the wrench vector, and the current robot configuration. wrench
is given relative to the 'tool0' body frame, which requires you to specify the robot configuration, q.

wrench = [0 0 0.5 0 0 0.3];
fext = externalForce(lbr,'tool0',wrench,q);
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Compute the resultant joint accelerations due to gravity, with the external force applied to the end-
effector 'tool0' when lbr is at its home configuration. The joint velocities and joint torques are
assumed to be zero (input as an empty vector []).

qddot = forwardDynamics(lbr,q,[],[],fext);

Compute Joint Torque to Counter External Forces

Use the externalForce function to generate force matrices to apply to a rigid body tree model. The
force matrix is an m-by-6 vector that has a row for each joint on the robot to apply a six-element
wrench. Use the externalForce function and specify the end effector to properly assign the wrench
to the correct row of the matrix. You can add multiple force matrices together to apply multiple forces
to one robot.

To calculate the joint torques that counter these external forces, use the inverseDynamics function.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for lbr.

q = homeConfiguration(lbr);

Set external force on link1. The input wrench vector is expressed in the base frame.

fext1 = externalForce(lbr,'link_1',[0 0 0.0 0.1 0 0]);

Set external force on the end effector, tool0. The input wrench vector is expressed in the tool0
frame.

fext2 = externalForce(lbr,'tool0',[0 0 0.0 0.1 0 0],q);

Compute the joint torques required to balance the external forces. To combine the forces, add the
force matrices together. Joint velocities and accelerations are assumed to be zero (input as []).

tau = inverseDynamics(lbr,q,[],[],fext1+fext2);

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the externalForce function, set the
DataFormat property to either "row" or "column".
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bodyname — Name of body to which external force is applied
string scalar | character vector

Name of body to which the external force is applied, specified as a string scalar or character vector.
This body name must match a body on the robot object.
Data Types: char | string

wrench — Torques and forces applied to body
[Tx Ty Tz Fx Fy Fz] vector

Torques and forces applied to the body, specified as a [Tx Ty Tz Fx Fy Fz] vector. The first three
elements of the wrench correspond to the moments around xyz-axes. The last three elements are
linear forces along the same axes. Unless you specify the robot configuration, the wrench is
assumed to be relative to the base frame.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either "row" or "column" .

Output Arguments
fext — External force matrix
n-by-6 matrix | 6-by-n matrix

External force matrix, returned as either an n-by-6 or 6-by-n matrix, where n is the velocity number
(degrees of freedom) of the robot. The shape depends on the DataFormat property of robot. The
"row" data format uses an n-by-6 matrix. The "column" data format uses a 6-by-n .

The composed matrix lists only values other than zero at the locations relevant to the body specified.
You can add force matrices together to specify multiple forces on multiple bodies. Use the external
force matrix to specify external forces to dynamics functions inverseDynamics and
forwardDynamics.

More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:
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The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".

Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.
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To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2017a

References
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2008. DOI.org (Crossref),

doi:10.1007/978-1-4899-7560-7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | inverseDynamics | forwardDynamics

Topics
“Compute Joint Torques To Balance An Endpoint Force and Moment”
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forwardDynamics
Joint accelerations given joint torques and states

Syntax
jointAccel = forwardDynamics(robot)
jointAccel = forwardDynamics(robot,configuration)
jointAccel = forwardDynamics(robot,configuration,jointVel)
jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq)
jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq,fext)

Description
jointAccel = forwardDynamics(robot) computes joint accelerations due to gravity at the
robot home configuration, with zero joint velocities and no external forces.

jointAccel = forwardDynamics(robot,configuration) also specifies the joint positions of
the robot configuration.

To specify the home configuration, zero joint velocities, or zero torques, use [] for that input
argument.

jointAccel = forwardDynamics(robot,configuration,jointVel) also specifies the joint
velocities of the robot.

jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq) also
specifies the joint torques applied to the robot.

jointAccel = forwardDynamics(robot,configuration,jointVel,jointTorq,fext) also
specifies an external force matrix that contains forces applied to each joint.

Examples

Compute Forward Dynamics Due to External Forces on Rigid Body Tree Model

Calculate the resultant joint accelerations for a given robot configuration with applied external forces
and forces due to gravity. A wrench is applied to a specific body with the gravity being specified for
the whole robot.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the gravity. By default, gravity is assumed to be zero.
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lbr.Gravity = [0 0 -9.81];

Get the home configuration for the lbr robot.

q = homeConfiguration(lbr);

Specify the wrench vector that represents the external forces experienced by the robot. Use the
externalForce function to generate the external force matrix. Specify the robot model, the end
effector that experiences the wrench, the wrench vector, and the current robot configuration. wrench
is given relative to the 'tool0' body frame, which requires you to specify the robot configuration, q.

wrench = [0 0 0.5 0 0 0.3];
fext = externalForce(lbr,'tool0',wrench,q);

Compute the resultant joint accelerations due to gravity, with the external force applied to the end-
effector 'tool0' when lbr is at its home configuration. The joint velocities and joint torques are
assumed to be zero (input as an empty vector []).

qddot = forwardDynamics(lbr,q,[],[],fext);

Input Arguments
robot — Robot model
RigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the forwardDynamics function, set the
DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or 'column'.

jointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the degrees of freedom
of the robot. To use the vector form of jointVel, set the DataFormat property for the robot to
either 'row' or 'column'.

jointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a specific joint.
To use the vector form of jointTorq, set the DataFormat property for the robot to either 'row' or
'column'.

fext — External force matrix
n-by-6 matrix | 6-by-n matrix

3 Methods

3-350



External force matrix, specified as either an n-by-6 or 6-by-n matrix, where n is the number of bodies
of the robot. The shape depends on the DataFormat property of robot. The 'row' data format uses
an n-by-6 matrix. The 'column' data format uses a 6-by-n .

The matrix lists only values other than zero at the locations relevant to the body specified. You can
add force matrices together to specify multiple forces on multiple bodies.

To create the matrix for a specified force or torque, see externalForce.

Output Arguments
jointAccel — Joint accelerations
vector

Joint accelerations, returned as a vector. The dimension of the joint accelerations vector is equal to
the degrees of freedom of the robot. Each element corresponds to a specific joint on the robot.

More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:

The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".
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Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2017a

References
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2008. DOI.org (Crossref),

doi:10.1007/978-1-4899-7560-7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | inverseDynamics | externalForce

Topics
“Compute Joint Torques To Balance An Endpoint Force and Moment”
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geometricJacobian
Geometric Jacobian for robot configuration

Syntax
jacobian = geometricJacobian(robot,configuration,endeffectorname)

Description
jacobian = geometricJacobian(robot,configuration,endeffectorname) computes the
geometric Jacobian relative to the base for the specified end-effector name and configuration for the
robot model.

Examples

Geometric Jacobian for Robot Configuration

Calculate the geometric Jacobian for a specific end effector and configuration of a robot.

Load a Puma robot, which is specified as a RigidBodyTree object.

load exampleRobots.mat puma1

Calculate the geometric Jacobian of body 'L6' on the Puma robot for a random configuration.

geoJacob = geometricJacobian(puma1,randomConfiguration(puma1),'L6')

geoJacob = 6×6

         0   -0.7795   -0.7795   -0.4592    0.5643   -0.6612
    0.0000    0.6264    0.6264   -0.5714   -0.7789   -0.2282
    1.0000    0.0000    0.0000    0.6801   -0.2734   -0.7146
    0.4544    0.3107    0.1746   -0.0000         0         0
   -0.5577    0.3866    0.2173   -0.0000         0         0
         0    0.7036    0.3304    0.0000         0         0

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

configuration — Robot configuration
vector | structure

Robot configuration, specified as a vector of joint positions or a structure with joint names and
positions for all the bodies in the robot model. You can generate a configuration using
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homeConfiguration(robot), randomConfiguration(robot), or by specifying your own joint
positions in a structure. To use the vector form of configuration, set the DataFormat property for
the robot to either "row" or "column" .

endeffectorname — End-effector name
string scalar | character vector

End-effector name, specified as a string scalar or character vector. An end effector can be any body in
the robot model.
Data Types: char | string

Output Arguments
jacobian — Geometric Jacobian
6-by-n matrix

Geometric Jacobian of the end effector with the specified configuration, returned as a 6-by-n
matrix, where n is the number of degrees of freedom of the robot. The Jacobian maps the joint-space
velocity to the end-effector velocity, relative to the base coordinate frame. The end-effector velocity
equals:

ω is the angular velocity, υ is the linear velocity, and  is the joint-space velocity.

More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:
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The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".

Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.
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To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2016b

References
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2008. DOI.org (Crossref),

doi:10.1007/978-1-4899-7560-7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
getTransform | homeConfiguration | randomConfiguration | rigidBodyJoint | rigidBody

Topics
“Compute Joint Torques To Balance An Endpoint Force and Moment”
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gravityTorque
Joint torques that compensate gravity

Syntax
gravTorq = gravityTorque(robot)
gravTorq = gravityTorque(robot,configuration)

Description
gravTorq = gravityTorque(robot) computes the joint torques required to hold the robot at its
home configuration.

gravTorq = gravityTorque(robot,configuration) specifies a joint configuration for
calculating the gravity torque.

Examples

Compute Gravity Torque for Robot Configuration

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'. Set the Gravity property.

lbr.DataFormat = 'row'; 
lbr.Gravity = [0 0 -9.81];

Get a random configuration for lbr.

q = randomConfiguration(lbr);

Compute the gravity-compensating torques for each joint.

gtau = gravityTorque(lbr,q);

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the gravityTorque function, set the
DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

3 Methods

3-358



Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or 'column' .

Output Arguments
gravTorq — Gravity-compensating torque for each joint
vector

Gravity-compensating torque for each joint, returned as a vector.

More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:

The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".

Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

 gravityTorque

3-359



also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2017a

References
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2008. DOI.org (Crossref),

doi:10.1007/978-1-4899-7560-7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")
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To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | inverseDynamics | velocityProduct
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getBody
Get robot body handle by name

Syntax
body = getBody(robot,bodyname)

Description
body = getBody(robot,bodyname) gets a body handle by name from the robot model.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
            Mass: 1
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    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')

subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)
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--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

bodyname — Body name
string scalar | character vector

Body name, specified as a string scalar or character vector. A body with this name must be on the
robot model specified by robot.
Data Types: char | string

Output Arguments
body — Rigid body
rigidBody object

Rigid body, returned as a rigidBody object. The returned rigidBodyTree object is still a part of
the rigidBodyTree robot model. Use replaceBody with a new body to modify the body in the
robot model.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")
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To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | addBody | replaceBody
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getTransform
Get transform between body frames

Syntax
transform = getTransform(robot,configuration,bodyname)
transform = getTransform(robot,configuration,sourcebody,targetbody)

Description
transform = getTransform(robot,configuration,bodyname) computes the transform that
converts points in the bodyname frame to the robot base frame, using the specified robot
configuration.

transform = getTransform(robot,configuration,sourcebody,targetbody) computes the
transform that converts points from the source body frame to the target body frame, using the
specified robot configuration.

Examples

Get Transform Between Frames for Robot Configuration

Get the transform between two frames for a specific robot configuration.

Load a sample robots that include the puma1 robot.

load exampleRobots.mat

Get the transform between the 'L2' and 'L6' bodies of the puma1 robot given a specific
configuration. The transform converts points in 'L2' frame to the 'L6' frame.

transform = getTransform(puma1,randomConfiguration(puma1),'L2','L6')

transform = 4×4

    0.2295   -0.4122    0.8817    0.0485
    0.8621   -0.3344   -0.3807    0.2118
    0.4517    0.8475    0.2786   -0.4027
         0         0         0    1.0000

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.
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configuration — Robot configuration
structure array

Robot configuration, specified as a structure array with joint names and positions for all the bodies in
the robot model. You can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint names and positions in a structure
array.

bodyname — Body name
string scalar | character vector

Body name, specified as a string scalar or character vector. This body must be on the robot model
specified in robot.
Data Types: char | string

targetbody — Target body name
string scalar | character vector

Target body name, specified as a character vector. This body must be on the robot model specified in
robot. The target frame is the coordinate system you want to transform points into.
Data Types: char | string

sourcebody — Body name
string scalar | character vector

Body name, specified as a string scalar or character vector. This body must be on the robot model
specified in robot. The source frame is the coordinate system you want points transformed from.
Data Types: char | string

Output Arguments
transform — Homogeneous transform
4-by-4 matrix

Homogeneous transform, returned as a 4-by-4 matrix.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")
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To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | geometricJacobian | homeConfiguration |
randomConfiguration
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homeConfiguration
Get home configuration of robot

Syntax
configuration = homeConfiguration(robot)

Description
configuration = homeConfiguration(robot) returns the home configuration of the robot
model. The home configuration is the ordered list of HomePosition properties of each nonfixed joint.

Examples

Visualize Robot Configurations

Show different configurations of a robot created using a RigidBodyTree model. Use the
homeConfiguration or randomConfiguration functions to generate the structure that defines all
the joint positions.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

Create a structure for the home configuration of a Puma robot. The structure has joint names and
positions for each body on the robot model.

config = homeConfiguration(puma1)

config=1×6 struct array with fields:
    JointName
    JointPosition

Show the home configuration using show. You do not need to specify a configuration input.

show(puma1);
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Modify the configuration and set the second joint position to pi/2. Show the resulting change in the
robot configuration.

config(2).JointPosition = pi/2;
show(puma1,config);
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Create random configurations and show them.

show(puma1,randomConfiguration(puma1));
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

Output Arguments
configuration — Robot configuration
vector | structure

Robot configuration, returned as a vector of joint positions or a structure with joint names and
positions for all the bodies in the robot model. You can generate a configuration using
homeConfiguration(robot), randomConfiguration(robot), or by specifying your own joint
positions in a structure. To use the vector form of configuration, set the DataFormat property for
the robot to either 'row' or 'column' .

Version History
Introduced in R2016b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
randomConfiguration | getTransform | geometricJacobian
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inverseDynamics
Required joint torques for given motion

Syntax
jointTorq = inverseDynamics(robot)
jointTorq = inverseDynamics(robot,configuration)
jointTorq = inverseDynamics(robot,configuration,jointVel)
jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel)
jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel,fext)

Description
jointTorq = inverseDynamics(robot) computes joint torques required for the robot to
statically hold its home configuration with no external forces applied.

jointTorq = inverseDynamics(robot,configuration) computes joint torques to hold the
specified robot configuration.

jointTorq = inverseDynamics(robot,configuration,jointVel) computes joint torques for
the specified joint configuration and velocities with zero acceleration and no external forces.

jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel) computes
joint torques for the specified joint configuration, velocities, and accelerations with no external
forces. To specify the home configuration, zero joint velocities, or zero accelerations, use [] for that
input argument.

jointTorq = inverseDynamics(robot,configuration,jointVel,jointAccel,fext)
computes joint torques for the specified joint configuration, velocities, accelerations, and external
forces. Use the externalForce function to generate fext.

Examples

Compute Inverse Dynamics from Static Joint Configuration

Use the inverseDynamics function to calculate the required joint torques to statically hold a
specific robot configuration. You can also specify the joint velocities, joint accelerations, and external
forces using other syntaxes.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.
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lbr.Gravity = [0 0 -9.81];

Generate a random configuration for lbr.

q = randomConfiguration(lbr);

Compute the required joint torques for lbr to statically hold that configuration.

tau = inverseDynamics(lbr,q);

Compute Joint Torque to Counter External Forces

Use the externalForce function to generate force matrices to apply to a rigid body tree model. The
force matrix is an m-by-6 vector that has a row for each joint on the robot to apply a six-element
wrench. Use the externalForce function and specify the end effector to properly assign the wrench
to the correct row of the matrix. You can add multiple force matrices together to apply multiple forces
to one robot.

To calculate the joint torques that counter these external forces, use the inverseDynamics function.

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the Gravity property to give a specific gravitational acceleration.

lbr.Gravity = [0 0 -9.81];

Get the home configuration for lbr.

q = homeConfiguration(lbr);

Set external force on link1. The input wrench vector is expressed in the base frame.

fext1 = externalForce(lbr,'link_1',[0 0 0.0 0.1 0 0]);

Set external force on the end effector, tool0. The input wrench vector is expressed in the tool0
frame.

fext2 = externalForce(lbr,'tool0',[0 0 0.0 0.1 0 0],q);

Compute the joint torques required to balance the external forces. To combine the forces, add the
force matrices together. Joint velocities and accelerations are assumed to be zero (input as []).

tau = inverseDynamics(lbr,q,[],[],fext1+fext2);
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the inverseDynamics function, set the
DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or 'column' .

jointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the velocity degrees of
freedom of the robot. To use the vector form of jointVel, set the DataFormat property for the
robot to either 'row' or 'column' .

jointAccel — Joint accelerations
vector

Joint accelerations, returned as a vector. The dimension of the joint accelerations vector is equal to
the velocity degrees of freedom of the robot. Each element corresponds to a specific joint on the
robot. To use the vector form of jointAccel, set the DataFormat property for the robot to either
'row' or 'column' .

fext — External force matrix
n-by-6 matrix | 6-by-n matrix

External force matrix, specified as either an n-by-6 or 6-by-n matrix, where n is the velocity degrees
of freedom of the robot. The shape depends on the DataFormat property of robot. The 'row' data
format uses an n-by-6 matrix. The 'column' data format uses a 6-by-n .

The matrix lists only values other than zero at the locations relevant to the body specified. You can
add force matrices together to specify multiple forces on multiple bodies.

To create the matrix for a specified force or torque, see externalForce.

Output Arguments
jointTorq — Joint torques
vector

Joint torques, returned as a vector. Each element corresponds to a torque applied to a specific joint.
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More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:

The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".

Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.
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• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2017a

References
[1] Featherstone, Roy. Rigid Body Dynamics Algorithms. Springer US, 2008. DOI.org (Crossref),

doi:10.1007/978-1-4899-7560-7.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | forwardDynamics | externalForce
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Topics
“Compute Joint Torques To Balance An Endpoint Force and Moment”
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massMatrix
Joint-space mass matrix

Syntax
H = massMatrix(robot)
H = massMatrix(robot,configuration)

Description
H = massMatrix(robot) returns the joint-space mass matrix of the home configuration of a robot.

H = massMatrix(robot,configuration) returns the mass matrix for a specified robot
configuration.

Examples

Calculate The Mass Matrix For A Robot Configuration

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Generate a random configuration for lbr.

q = randomConfiguration(lbr);

Get the mass matrix at configuration q.

H = massMatrix(lbr,q);

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the massMatrix function, set the
DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
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randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or 'column' .

Output Arguments
H — Mass matrix
positive-definite symmetric matrix

Mass matrix of the robot, returned as a positive-definite symmetric matrix with size n-by-n, where n is
the velocity degrees of freedom of the robot.

More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:

The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".

Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ
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also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.
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See Also
rigidBodyTree | gravityTorque | homeConfiguration | velocityProduct
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randomConfiguration
Generate random configuration of robot

Syntax
configuration = randomConfiguration(robot)

Description
configuration = randomConfiguration(robot) returns a random configuration of the
specified robot. Each joint position in this configuration respects the joint limits set by the
PositionLimits property of the corresponding rigidBodyJoint object in the robot model.

Examples

Visualize Robot Configurations

Show different configurations of a robot created using a RigidBodyTree model. Use the
homeConfiguration or randomConfiguration functions to generate the structure that defines all
the joint positions.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

Create a structure for the home configuration of a Puma robot. The structure has joint names and
positions for each body on the robot model.

config = homeConfiguration(puma1)

config=1×6 struct array with fields:
    JointName
    JointPosition

Show the home configuration using show. You do not need to specify a configuration input.

show(puma1);
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Modify the configuration and set the second joint position to pi/2. Show the resulting change in the
robot configuration.

config(2).JointPosition = pi/2;
show(puma1,config);
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Create random configurations and show them.

show(puma1,randomConfiguration(puma1));
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

Output Arguments
configuration — Robot configuration
vector | structure

Robot configuration, returned as a vector of joint positions or a structure with joint names and
positions for all the bodies in the robot model. You can generate a configuration using
homeConfiguration(robot), randomConfiguration(robot), or by specifying your own joint
positions in a structure. To use the vector form of configuration, set the DataFormat property for
the robot to either 'row' or 'column' .

Version History
Introduced in R2016b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
homeConfiguration | getTransform | geometricJacobian
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removeBody
Remove body from robot

Syntax
removeBody(robot,bodyname)
newSubtree = removeBody(robot,bodyname)

Description
removeBody(robot,bodyname) removes the body and all subsequently attached bodies from the
robot model.

newSubtree = removeBody(robot,bodyname) returns the subtree created by removing the body
and all subsequently attached bodies from the robot model.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:
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            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')

subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
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addSubtree(puma1,'L3',subtree)

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

bodyname — Body name
string scalar | character vector

Body name, specified as a string scalar character vector. This body must be on the robot model
specified in robot.
Data Types: char | string

Output Arguments
newSubtree — Robot subtree
rigidBodyTree object

Robot subtree, returned as a rigidBodyTree object. This new subtree uses the parent name of the
body specified by bodyname as the base name. All bodies that are attached in the previous robot
model (including the body with bodyname specified) are added to the subtree.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | addBody | replaceBody
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replaceBody
Replace body on robot

Syntax
replaceBody(robot,bodyname,newbody)

Description
replaceBody(robot,bodyname,newbody) replaces the body in the robot model with the new
body. All properties of the body are updated accordingly, except the Parent and Children
properties. The rest of the robot model is unaffected.

Examples

Specify Dynamics Properties to Rigid Body Tree

To use dynamics functions to calculate joint torques and accelerations, specify the dynamics
properties for the rigidBodyTree object and rigidBody.

Create a rigid body tree model. Create two rigid bodies to attach to it.

robot = rigidBodyTree('DataFormat','row');
body1 = rigidBody('body1');
body2 = rigidBody('body2');

Specify joints to attach to the bodies. Set the fixed transformation of body2 to body1. This transform
is 1m in the x-direction.

joint1 = rigidBodyJoint('joint1','revolute');
joint2 = rigidBodyJoint('joint2');
setFixedTransform(joint2,trvec2tform([1 0 0]))
body1.Joint = joint1;
body2.Joint = joint2;

Specify dynamics properties for the two bodies. Add the bodies to the robot model. For this example,
basic values for a rod (body1) with an attached spherical mass (body2) are given.

body1.Mass = 2;
body1.CenterOfMass = [0.5 0 0];
body1.Inertia = [0.001 0.67 0.67 0 0 0];

body2.Mass = 1;
body2.CenterOfMass = [0 0 0];
body2.Inertia = 0.0001*[4 4 4 0 0 0];

addBody(robot,body1,'base');
addBody(robot,body2,'body1');

Compute the center of mass position of the whole robot. Plot the position on the robot. Move the view
to the xy plane.
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comPos = centerOfMass(robot);

show(robot);
hold on
plot(comPos(1),comPos(2),'or')
view(2)

Change the mass of the second body. Notice the change in center of mass.

body2.Mass = 20;
replaceBody(robot,'body2',body2)

comPos2 = centerOfMass(robot);
plot(comPos2(1),comPos2(2),'*g')
hold off
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. The rigid body is added to this object and
attached at the rigid body specified by bodyname.

bodyname — Body name
string scalar | character vector

Body name, specified as a string scalar or character vector. This body must be on the robot model
specified in robot.
Data Types: char | string

newbody — Rigid body
rigidBody object

Rigid body, specified as a rigidBody object.

Version History
Introduced in R2016b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | replaceJoint | addBody | removeBody
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replaceJoint
Replace joint on body

Syntax
replaceJoint(robot,bodyname,joint)

Description
replaceJoint(robot,bodyname,joint) replaces the joint on the specified body in the robot
model if the body is a part of the robot model. This method is the only way to change joints in a robot
model. You cannot directly assign the Joint property of a rigid body.

Examples

Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'

 replaceJoint
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           Joint: [1x1 rigidBodyJoint]
            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')

subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)
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showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

bodyname — Body name
string scalar | character vector

Body name, specified as a string scalar or character vector. This body must be on the robot model
specified in robot.
Data Types: char | string

joint — Replacement joint
rigidBodyJoint object

Replacement joint, specified as a rigidBodyJoint object.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

 replaceJoint
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To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | addBody | replaceBody
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show
Show robot model in figure

Syntax
show(robot)
show(robot,configuration)
show( ___ ,Name,Value)
ax = show( ___ )

Description
show(robot) plots the body frames of the robot model in a figure with the predefined home
configuration. Both Frames and Visuals are displayed automatically.

show(robot,configuration) uses the joint positions specified in configuration to show the
robot body frames.

show( ___ ,Name,Value) specifies options using one or more name-value pair arguments in
addition to any combination of input arguments from previous syntaxes. For example,
'Frames','off' hides the rigid body frames in the figure.

ax = show( ___ ) returns the axes handle the robot is plotted on.

Examples

Display Robot Model with Visual Geometries

You can import robots that have .stl files associated with the Unified Robot Description format
(URDF) file to describe the visual geometries of the robot. Each rigid body has an individual visual
geometry specified. The importrobot function parses the URDF file to get the robot model and
visual geometries. The function assumes that visual geometry and collision geometry of the robot are
the same and assigns the visual geometries as collision geometries of corresponsing bodies.

Use the show function to display the visual and collosion geometries of the robot model in a figure.
You can then interact with the model by clicking components to inspect them and right-clicking to
toggle visibility.

Import a robot model as a URDF file. The .stl file locations must be properly specified in this URDF.
To add other .stl files to individual rigid bodies, see addVisual.

robot = importrobot('iiwa14.urdf');

Visualize the robot with the associated visual model. Click bodies or frames to inspect them. Right-
click bodies to toggle visibility for each visual geometry.

show(robot,'visuals','on','collision','off');

 show
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Visualize the robot with the associated collision geometries. Click bodies or frames to inspect them.
Right-click bodies to toggle visibility for each collision geometry.

show(robot,'visuals','off','collision','on'); 
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Visualize Robot Configurations

Show different configurations of a robot created using a RigidBodyTree model. Use the
homeConfiguration or randomConfiguration functions to generate the structure that defines all
the joint positions.

Load example robots as RigidBodyTree objects.

load exampleRobots.mat

Create a structure for the home configuration of a Puma robot. The structure has joint names and
positions for each body on the robot model.

config = homeConfiguration(puma1)

config=1×6 struct array with fields:
    JointName
    JointPosition

Show the home configuration using show. You do not need to specify a configuration input.

show(puma1);

 show
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Modify the configuration and set the second joint position to pi/2. Show the resulting change in the
robot configuration.

config(2).JointPosition = pi/2;
show(puma1,config);
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Create random configurations and show them.

show(puma1,randomConfiguration(puma1));

 show
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Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 3-
408. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
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2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------

 show
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   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off

References

[1] Corke, P. I., and B. Armstrong-Helouvry. “A Search for Consensus among Model Parameters
Reported for the PUMA 560 Robot.” Proceedings of the 1994 IEEE International Conference on
Robotics and Automation, IEEE Comput. Soc. Press, 1994, pp. 1608–13. DOI.org (Crossref),
doi:10.1109/ROBOT.1994.351360.

Add Collision Meshes and Check Collisions for Manipulator Robot Arm

Load a robot model and modify the collision meshes. Clear existing collision meshes, add simple
collision object primitives, and check whether certain configurations are in collision.
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Load Robot Model

Load a preconfigured robot model into the workspace using the loadrobot function. This model
already has collision meshes specified for each body. Iterate through all the rigid body elements and
clear the existing collision meshes. Confirm that the existing meshes are gone.

robot = loadrobot('kukaIiwa7','DataFormat','column');

for i = 1:robot.NumBodies
    clearCollision(robot.Bodies{i})
end

show(robot,'Collisions','on','Visuals','off');

Add Collision Cylinders

Iteratively add a collision cylinder to each body. Skip some bodies for this specific model, as they
overlap and always collide with the end effector (body 10).

collisionObj = collisionCylinder(0.05,0.25);

for i = 1:robot.NumBodies
    if i > 6 && i < 10
        % Skip these bodies.
    else
        addCollision(robot.Bodies{i},collisionObj)
    end

 show
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end

show(robot,'Collisions','on','Visuals','off');

Check for Collisions

Generate a series of random configurations. Check whether the robot is in collision at each
configuration. Visualize each configuration that has a collision.

figure
rng(0) % Set random seed for repeatability.
for i = 1:20
    config = randomConfiguration(robot);
    isColliding = checkCollision(robot,config,'SkippedSelfCollisions','parent');
    if isColliding
        show(robot,config,'Collisions','on','Visuals','off');
        title('Collision Detected')
    else
        % Skip non-collisions.
    end
end
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

configuration — Robot configuration
vector | structure

Robot configuration, specified as a vector of joint positions or a structure with joint names and
positions for all the bodies in the robot model. You can generate a configuration using
homeConfiguration(robot), randomConfiguration(robot), or by specifying your own joint
positions in a structure. To use the vector form of configuration, set the DataFormat property for
the robot to either "row" or "column" .

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'Frames','off' hides the rigid body frames in the figure.

 show
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Parent — Parent of axes
Axes object

Parent of axes, specified as the comma-separated pair consisting of 'Parent' and an Axes object in
which to draw the robot. By default, the robot is plotted in the active axes.

PreservePlot — Option to preserve robot plot
true or 1 (default) | false or 0

Option to preserve robot plot, specified as the comma-separated pair consisting of 'PreservePlot'
and a logical 1 (true) or 0 (false). When you specify this argument as true, the function does not
overwrite previous plots displayed by calling show. This setting functions similarly to hold on for a
standard MATLAB figure, but is limited to robot body frames. When you specify this argument as
false, the function overwrites previous plots of the robot.

Note When the 'PreservePlot' value is true, the 'FastUpdate' value must be false.

Data Types: logical

Frames — Display body frames
'on' (default) | 'off'

Display body frames, specified as the comma-separated pair consisting of 'Frames' and 'on' or
'off'. These frames are the coordinate frames of individual bodies on the rigid body tree.
Data Types: char | string

Visuals — Display visual geometries
'on' (default) | 'off'

Display visual geometries, specified as the comma-separated pair consisting of 'Visuals' and 'on'
or 'off'. Individual visual geometries can also be turned off by right-clicking them in the figure.

Specify individual visual geometries using addVisual. To import a URDF robot model with .stl files
for meshes, see the importrobot function.
Data Types: char | string

Collisions — Display collision geometries
'off' (default) | 'on'

Display collision geometries, specified as the comma-separated pair consisting of 'Collisions' and
'on' or 'off'.

Add collision geometries to the individual rigid bodies in the robot model using the addCollision
function. To import a URDF robot model with .stl files for meshes, see the importrobot function.
Data Types: char | string

Position — Position of robot
[0 0 0 0] (default) | four-element vector

Position of the robot, specified as the comma-separated pair consisting of 'Position' and a four-
element vector of the form [x y z yaw]. The x, y, and z elements specify the position in meters, and
yaw specifies the yaw angle in radians.
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Data Types: single | double

FastUpdate — Fast updates to existing plot
false or 0 (default) | true or 1

Fast updates to existing plot, specified as the comma-separated pair consisting of 'FastUpdate' and
a logical 0 (false) or 1 (true). You must use the show object function to initially display the robot
model before you can specify it with this argument.

Note When the 'FastUpdate' value is true, the 'PreservePlot' value must be false.

Data Types: logical

Output Arguments
ax — Axes graphic handle
Axes object

Axes graphic handle, returned as an Axes object. This object contains the properties of the figure
that the robot is plotted onto.

Tips
Your robot model has visual components associated with it. Each rigidBody object contains a
coordinate frame that is displayed as the body frame. Each body also can have visual meshes
associated with them. By default, both of these components are displayed automatically. You can
inspect or modify the visual components of the rigid body tree display. Click body frames or visual
meshes to highlight them in yellow and see the associated body name, index, and joint type. Right-
click to toggle visibility of individual components.

• Body Frames: Individual body frames are displayed as a 3-axis coordinate frame. Fixed frames
are pink frames. Movable joint types are displayed as RGB axes. You can click a body frame to see
the axis of motion. Prismatic joints show a yellow arrow in the direction of the axis of motion and,
revolute joints show a circular arrow around the rotation axis.

 show
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• Visual Meshes: Individual visual geometries are specified using addVisual or by using the
importrobot to import a robot model with .stl files specified. By right-clicking individual
bodies in a figure, you can turn off their meshes or specify the Visuals name-value pair to hide
all visual geometries.
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Version History
Introduced in R2016b

See Also
showdetails | randomConfiguration | importrobot

 show
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showdetails
Show details of robot model

Syntax
showdetails(robot)

Description
showdetails(robot) displays in the MATLAB command window the details of each body in the
robot model. These details include the body name, associated joint name, joint type, parent name,
and children names.

Examples

Attach Rigid Body and Joint to Rigid Body Tree

Add a rigid body and corresponding joint to a rigid body tree. Each rigidBody object contains a
rigidBodyJoint object and must be added to the rigidBodyTree using addBody.

Create a rigid body tree.

rbtree = rigidBodyTree;

Create a rigid body with a unique name.

body1 = rigidBody('b1');

Create a revolute joint. By default, the rigidBody object comes with a fixed joint. Replace the joint
by assigning a new rigidBodyJoint object to the body1.Joint property.

jnt1 = rigidBodyJoint('jnt1','revolute');
body1.Joint = jnt1;

Add the rigid body to the tree. Specify the body name that you are attaching the rigid body to.
Because this is the first body, use the base name of the tree.

basename = rbtree.BaseName;
addBody(rbtree,body1,basename)

Use showdetails on the tree to confirm the rigid body and joint were added properly.

showdetails(rbtree)

--------------------
Robot: (1 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           b1         jnt1     revolute             base(0)   
--------------------
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Modify a Robot Rigid Body Tree Model

Make changes to an existing rigidBodyTree object. You can get replace joints, bodies and subtrees
in the rigid body tree.

Load example robots as rigidBodyTree objects.

load exampleRobots.mat

View the details of the Puma robot using showdetails.

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------

Get a specific body to inspect the properties. The only child of the L3 body is the L4 body. You can
copy a specific body as well.

body3 = getBody(puma1,'L3');
childBody = body3.Children{1}

childBody = 
  rigidBody with properties:

            Name: 'L4'
           Joint: [1x1 rigidBodyJoint]
            Mass: 1
    CenterOfMass: [0 0 0]
         Inertia: [1 1 1 0 0 0]
          Parent: [1x1 rigidBody]
        Children: {[1x1 rigidBody]}
         Visuals: {}
      Collisions: {}

body3Copy = copy(body3);

Replace the joint on the L3 body. You must create a new Joint object and use replaceJoint to
ensure the downstream body geometry is unaffected. Call setFixedTransform if necessary to
define a transform between the bodies instead of with the default identity matrices.

newJoint = rigidBodyJoint('prismatic');
replaceJoint(puma1,'L3',newJoint);

showdetails(puma1)

 showdetails
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--------------------
Robot: (6 bodies)

 Idx    Body Name       Joint Name       Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------       ----------       ----------    ----------------   ----------------
   1           L1             jnt1         revolute             base(0)   L2(2)  
   2           L2             jnt2         revolute               L1(1)   L3(3)  
   3           L3        prismatic            fixed               L2(2)   L4(4)  
   4           L4             jnt4         revolute               L3(3)   L5(5)  
   5           L5             jnt5         revolute               L4(4)   L6(6)  
   6           L6             jnt6         revolute               L5(5)   
--------------------

Remove an entire body and get the resulting subtree using removeBody. The removed body is
included in the subtree.

subtree = removeBody(puma1,'L4')

subtree = 
  rigidBodyTree with properties:

     NumBodies: 3
        Bodies: {[1x1 rigidBody]  [1x1 rigidBody]  [1x1 rigidBody]}
          Base: [1x1 rigidBody]
     BodyNames: {'L4'  'L5'  'L6'}
      BaseName: 'L3'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Remove the modified L3 body. Add the original copied L3 body to the L2 body, followed by the
returned subtree. The robot model remains the same. See a detailed comparison through
showdetails.

removeBody(puma1,'L3');
addBody(puma1,body3Copy,'L2')
addSubtree(puma1,'L3',subtree)

showdetails(puma1)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1           L1         jnt1     revolute             base(0)   L2(2)  
   2           L2         jnt2     revolute               L1(1)   L3(3)  
   3           L3         jnt3     revolute               L2(2)   L4(4)  
   4           L4         jnt4     revolute               L3(3)   L5(5)  
   5           L5         jnt5     revolute               L4(4)   L6(6)  
   6           L6         jnt6     revolute               L5(5)   
--------------------
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Build Manipulator Robot Using Denavit-Hartenberg Parameters

Use the Denavit-Hartenberg (DH) parameters of the Puma560® robot to build a robot. Each rigid
body is added one at a time, with the child-to-parent transform specified by the joint object.

The DH parameters define the geometry of the robot with relation to how each rigid body is attached
to its parent. For convenience, setup the parameters for the Puma560 robot in a matrix[1] on page 3-
421. The Puma robot is a serial chain manipulator. The DH parameters are relative to the previous
row in the matrix, corresponding to the previous joint attachment.

dhparams = [0       pi/2    0       0;
            0.4318    0       0       0
            0.0203    -pi/2    0.15005    0;
            0       pi/2    0.4318    0;
            0       -pi/2    0       0;
            0       0       0       0];

Create a rigid body tree object to build the robot.

robot = rigidBodyTree;

Create the first rigid body and add it to the robot. To add a rigid body:

1 Create a rigidBody object and give it a unique name.
2 Create a rigidBodyJoint object and give it a unique name.
3 Use setFixedTransform to specify the body-to-body transformation using DH parameters. The

last element of the DH parameters, theta, is ignored because the angle is dependent on the joint
position.

4 Call addBody to attach the first body joint to the base frame of the robot.

body1 = rigidBody('body1');
jnt1 = rigidBodyJoint('jnt1','revolute');

setFixedTransform(jnt1,dhparams(1,:),'dh');
body1.Joint = jnt1;

addBody(robot,body1,'base')

Create and add other rigid bodies to the robot. Specify the previous body name when calling
addBody to attach it. Each fixed transform is relative to the previous joint coordinate frame.

body2 = rigidBody('body2');
jnt2 = rigidBodyJoint('jnt2','revolute');
body3 = rigidBody('body3');
jnt3 = rigidBodyJoint('jnt3','revolute');
body4 = rigidBody('body4');
jnt4 = rigidBodyJoint('jnt4','revolute');
body5 = rigidBody('body5');
jnt5 = rigidBodyJoint('jnt5','revolute');
body6 = rigidBody('body6');
jnt6 = rigidBodyJoint('jnt6','revolute');

setFixedTransform(jnt2,dhparams(2,:),'dh');
setFixedTransform(jnt3,dhparams(3,:),'dh');
setFixedTransform(jnt4,dhparams(4,:),'dh');
setFixedTransform(jnt5,dhparams(5,:),'dh');
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setFixedTransform(jnt6,dhparams(6,:),'dh');

body2.Joint = jnt2;
body3.Joint = jnt3;
body4.Joint = jnt4;
body5.Joint = jnt5;
body6.Joint = jnt6;

addBody(robot,body2,'body1')
addBody(robot,body3,'body2')
addBody(robot,body4,'body3')
addBody(robot,body5,'body4')
addBody(robot,body6,'body5')

Verify that your robot was built properly by using the showdetails or show function. showdetails
lists all the bodies in the MATLAB® command window. show displays the robot with a given
configuration (home by default). Calls to axis modify the axis limits and hide the axis labels.

showdetails(robot)

--------------------
Robot: (6 bodies)

 Idx    Body Name   Joint Name   Joint Type    Parent Name(Idx)   Children Name(s)
 ---    ---------   ----------   ----------    ----------------   ----------------
   1        body1         jnt1     revolute             base(0)   body2(2)  
   2        body2         jnt2     revolute            body1(1)   body3(3)  
   3        body3         jnt3     revolute            body2(2)   body4(4)  
   4        body4         jnt4     revolute            body3(3)   body5(5)  
   5        body5         jnt5     revolute            body4(4)   body6(6)  
   6        body6         jnt6     revolute            body5(5)   
--------------------

show(robot);
axis([-0.5,0.5,-0.5,0.5,-0.5,0.5])
axis off
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

Version History
Introduced in R2016b

See Also
show | replaceBody | replaceJoint
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subtree
Create subtree from robot model

Syntax
newSubtree = subtree(robot,bodyname)

Description
newSubtree = subtree(robot,bodyname) creates a new robot model using the parent name of
the body specified by bodyname as the base name. All subsequently attached bodies (including the
body with bodyname specified) are added to the subtree. The original robot model is unaffected.

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

bodyname — Body name
string scalar | character vector

Body name, specified as a string scalar or character vector. This body must be on the robot model
specified in robot.
Data Types: char | string

Output Arguments
newSubtree — Robot subtree
rigidBodyTree object

Robot subtree, returned as a rigidBodyTree object. This new subtree uses the parent name of the
body specified by bodyname as the base name. All bodies that are attached in the previous robot
model (including the body with bodyname specified) are added to the subtree.

Version History
Introduced in R2016b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:

robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyJoint | rigidBody | addBody | replaceBody
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velocityProduct
Joint torques that cancel velocity-induced forces

Syntax
jointTorq = velocityProduct(robot,configuration,jointVel)

Description
jointTorq = velocityProduct(robot,configuration,jointVel) computes the joint
torques required to cancel the forces induced by the specified joint velocities under a certain joint
configuration. Gravity torque is not included in this calculation.

Examples

Compute Velocity-Induced Joint Torques

Load a predefined KUKA LBR robot model, which is specified as a RigidBodyTree object.

load exampleRobots.mat lbr

Set the data format to 'row'. For all dynamics calculations, the data format must be either 'row' or
'column'.

lbr.DataFormat = 'row';

Set the joint velocity vector.

qdot = [0 0 0.2 0.3 0 0.1 0];

Compute the joint torques required to cancel the velocity-induced joint torques at the robot home
configuration ([] input). The velocity-induced joint torques equal the negative of the
velocityProduct output.

tau = -velocityProduct(lbr,[],qdot);

Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object. To use the velocityProduct function, set the
DataFormat property to either 'row' or 'column'.

configuration — Robot configuration
vector

Robot configuration, specified as a vector with positions for all nonfixed joints in the robot model. You
can generate a configuration using homeConfiguration(robot),
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randomConfiguration(robot), or by specifying your own joint positions. To use the vector form of
configuration, set the DataFormat property for the robot to either 'row' or 'column' .

jointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the velocity degrees of
freedom of the robot. To use the vector form of jointVel, set the DataFormat property for the
robot to either 'row' or 'column' .

Output Arguments
jointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a specific joint.

More About
Dynamics Properties

When working with robot dynamics, specify the information for individual bodies of your manipulator
robot using these properties of the rigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as a vector of the form [x y

z]. The vector describes the location of the center of mass of the rigid body, relative to the body
frame, in meters. The centerOfMass object function uses these rigid body property values when
computing the center of mass of a robot.

• Inertia — Inertia of the rigid body, specified as a vector of the form [Ixx Iyy Izz Iyz Ixz
Ixy]. The vector is relative to the body frame in kilogram square meters. The inertia tensor is a
positive definite matrix of the form:

The first three elements of the Inertia vector are the moment of inertia, which are the diagonal
elements of the inertia tensor. The last three elements are the product of inertia, which are the off-
diagonal elements of the inertia tensor.

For information related to the entire manipulator robot model, specify these rigidBodyTree object
properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y z] vector
in m/s2. By default, there is no gravitational acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics functions,
specified as "struct", "row", or "column".
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Dynamics Equations

Manipulator rigid body dynamics are governed by this equation:

d
dt

q
q̇

=
q̇

M(q)−1 −C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

also written as:

M(q)q̈ = − C(q, q̇)q̇ − G(q)− J(q)TFExt + τ

where:

• M(q) — is a joint-space mass matrix based on the current robot configuration. Calculate this
matrix by using the massMatrix object function.

• C(q, q̇) — is the coriolis terms, which are multiplied by q̇ to calculate the velocity product.
Calculate the velocity product by using by the velocityProduct object function.

• G(q) — is the gravity torques and forces required for all joints to maintain their positions in the
specified gravity Gravity. Calculate the gravity torque by using the gravityTorque object
function.

• J(q) — is the geometric Jacobian for the specified joint configuration. Calculate the geometric
Jacobian by using the geometricJacobian object function.

• FExt — is a matrix of the external forces applied to the rigid body. Generate external forces by
using the externalForce object function.

• τ — are the joint torques and forces applied directly as a vector to each joint.
• q, q̇, q̈ — are the joint configuration, joint velocities, and joint accelerations, respectively, as

individual vectors. For revolute joints, specify values in radians, rad/s, and rad/s2, respectively. For
prismatic joints, specify in meters, m/s, and m/s2.

To compute the dynamics directly, use the forwardDynamics object function. The function
calculates the joint accelerations for the specified combinations of the above inputs.

To achieve a certain set of motions, use the inverseDynamics object function. The function
calculates the joint torques required to achieve the specified configuration, velocities, accelerations,
and external forces.

Version History
Introduced in R2017a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

When creating the rigidBodyTree object, use the syntax that specifies the MaxNumBodies as an
upper bound for adding bodies to the robot model. You must also specify the DataFormat property as
a name-value pair. For example:
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robot = rigidBodyTree("MaxNumBodies",15,"DataFormat","row")

To minimize data usage, limit the upper bound to a number close to the expected number of bodies in
the model. All data formats are supported for code generation. To use the dynamics functions, the
data format must be set to "row" or "column".

The show and showdetails functions do not support code generation.

See Also
rigidBodyTree | inverseDynamics | gravityTorque | massMatrix
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writeAsFunction
Create rigidBodyTree code generating function

Syntax
writeAsFunction(robot,filename)

Description
writeAsFunction(robot,filename) creates a function file that constructs the rigidBodyTree
object. The created function supports code generation.

Examples

Create Rigid Body Tree Code Generating Function

Load a robot model as a rigidBodyTree object.

robot = loadrobot("kinovaGen3")

robot = 
  rigidBodyTree with properties:

     NumBodies: 8
        Bodies: {1x8 cell}
          Base: [1x1 rigidBody]
     BodyNames: {1x8 cell}
      BaseName: 'base_link'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Show the robot model in a figure.

show(robot);
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Create a code generating function that constructs the rigidBodyTree object.

writeAsFunction(robot,'KG3Codegen')

Construct the robot model using the generated function.

rbt = KG3Codegen

rbt = 
  rigidBodyTree with properties:

     NumBodies: 8
        Bodies: {1x8 cell}
          Base: [1x1 rigidBody]
     BodyNames: {1x8 cell}
      BaseName: 'base_link'
       Gravity: [0 0 0]
    DataFormat: 'struct'

Show the robot model in a figure.

show(rbt);
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Input Arguments
robot — Robot model
rigidBodyTree object

Robot model, specified as a rigidBodyTree object.

filename — Name of function file
string scalar | character vector

Name of the function file, specified as a string scalar or character vector. The name must be a valid
MATLAB name (must start with a letter and contain only letters, numbers and underscores).
Example: "iiwa14Codegen"
Data Types: char | string

Version History
Introduced in R2021a

See Also
Functions
importrobot | loadrobot
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Objects
rigidBodyTree
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bodyInfo
Import information for body

Syntax
info = bodyInfo(importInfo,bodyName)

Description
info = bodyInfo(importInfo,bodyName) returns the import information for a body in a
rigidBodyTree object that is created from calling importrobot. Specify the
rigidBodyTreeImportInfo object from the import process.

Input Arguments
importInfo — Robot import information
rigidBodyTreeImportInfo object

Robot import information, specified as a rigidBodyTreeImportInfo object. This object is returned
when you use importrobot.

bodyName — Name of body
character vector | string scalar

Name of a body in the rigidBodyTree object that was created using importrobot, specified as a
character vector or string scalar. Partial string matching is accepted and returns a cell array of
structures that match the partial string.
Example: 'Body01'
Data Types: char | string

Output Arguments
info — Import information for specific component
structure | cell array of structures

Import information for specific component, returned as a structure or cell array of structures. This
structure contains the information about the imported blocks from Simscape Multibody and the
associated components in the rigidBodyTree object. The fields of each structure are:

• BodyName — Name of the body in the rigidBodyTree object.
• JointName — Name of the joint associated with BodyName.
• BodyBlocks — Blocks used from the Simscape Multibody model.
• JointBlocks — Joint blocks used from the Simscape Multibody model.

Version History
Introduced in R2018b
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See Also
importrobot | rigidBodyTreeImportInfo | rigidBodyTree | showdetails
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bodyInfoFromBlock
Import information for block name

Syntax
info = bodyInfo(importInfo,blockName)

Description
info = bodyInfo(importInfo,blockName) returns the import information for a block in a
Simscape Multibody model that is imported from calling importrobot. Specify the
rigidBodyTreeImportInfo object from the import process.

Input Arguments
importInfo — Robot import information
rigidBodyTreeImportInfo object

Robot import information, specified as a rigidBodyTreeImportInfo object. This object is returned
when you use importrobot.

blockName — Name of block
character vector | string scalar

Name of a block in the Simscape Multibody model that was imported using importrobot, specified
as a character vector or string scalar. Partial string matching is accepted and returns a cell array of
structures that match the partial string.
Example: 'Prismatic Joint 2'
Data Types: char | string

Output Arguments
info — Import information for specific component
structure | cell array of structures

Import information for specific component, returned as a structure or cell array of structures. This
structure contains the information about the imported blocks from Simscape Multibody and the
associated components in the rigidBodyTree object. The fields of each structure are:

• BodyName — Name of the body in the rigidBodyTree object.
• JointName — Name of the joint associated with BodyName.
• BodyBlocks — Blocks used from the Simscape Multibody model.
• JointBlocks — Joint blocks used from the Simscape Multibody model.

Version History
Introduced in R2018b
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See Also
importrobot | rigidBodyTreeImportInfo | rigidBodyTree | showdetails
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bodyInfoFromJoint
Import information for given joint name

Syntax
info = bodyInfo(importInfo,jointName)

Description
info = bodyInfo(importInfo,jointName) returns the import information for a joint in a
rigidBodyTree object that is created from calling importrobot. Specify the
rigidBodyTreeImportInfo object from the import process.

Input Arguments
importInfo — Robot import information
rigidBodyTreeImportInfo object

Robot import information, specified as a rigidBodyTreeImportInfo object. This object is returned
when you use importrobot.

jointName — Name of joint
character vector | string scalar

Name of a joint in the rigidBodyTree object that was created using importrobot, specified as a
character vector or string scalar. Partial string matching is accepted and returns a cell array of
structures that match the partial string.
Example: 'Joint01'
Data Types: char | string

Output Arguments
info — Import information for specific component
structure | cell array of structures

Import information for specific component, specified as a structure or cell array of structures. This
structure contains the information about the imported blocks from Simscape Multibody and the
associated components in the rigidBodyTree object. The fields of each structure are:

• BodyName — Name of the body in the rigidBodyTree object.
• JointName — Name of the joint associated with BodyName.
• BodyBlocks — Blocks used from the Simscape Multibody model.
• JointBlocks — Joint blocks used from the Simscape Multibody model.

Version History
Introduced in R2018b
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See Also
importrobot | rigidBodyTreeImportInfo | rigidBodyTree
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showdetails
Display details of imported robot

Syntax
showdetails(importInfo)

Description
showdetails(importInfo) displays the details of each body in the rigidBodyTree object that is
created from calling importrobot. Specify the rigidBodyTreeImportInfo object from the import
process.

The list shows the bodies with their associated joint name, joint type, source blocks, parent body
name, and children body names. The list also provides highlight links to the associated blocks used in
the Simscape Multibody model.

Note The Highlight links assume the block names are unchanged.

Input Arguments
importInfo — Robot import information
rigidBodyTreeImportInfo object

Robot import information, specified as a rigidBodyTreeImportInfo object. This object is returned
when you use importrobot.

Version History
Introduced in R2018b

See Also
importrobot | rigidBodyTreeImportInfo | rigidBodyTree
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move
Move robot platform in scenario

Syntax
move(platform,type,motion)

Description
move(platform,type,motion) moves the robot platform of the specified type in the scenario
according to the specified motion.

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.

ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);
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Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Input Arguments
platform — Robot platform in scenario
robotPlatform object

Robot platform in the scenario, specified as a robotPlatform object.

type — Type of robot platform
"base"

Type of robot platform, specified as "base".
Data Types: char | string

motion — Robot platform motion at current instance in scenario
16-element vector

Robot platform motion at the current instance in the scenario, specified as a 16-element vector with
these elements in order:

• [x y z] — Positions in xyz-axes in meters.
• [vx vy vz] — Velocities in xyz-directions in meters per second.
• [ax ay az] — Accelerations in xyz-directions in meters per second.
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• [qw qx qy qz] — Quaternion vector for orientation.
• [wx wy wz] — Angular velocities in radians per second.

Data Types: single | double

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
read | updateMesh
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read
Read robot platform motion vector

Syntax
motion = read(platform)

Description
motion = read(platform) reads the latest motion of the robot platform base in the scenario.

Examples

Simulate Simple Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a cylinder as meshes.

addMesh(scenario,"Plane",Size=[30 30],Color=[0.7 0.7 0.7])
addMesh(scenario,"Cylinder",Position=[-2 4 0.5],Color=[0 1 1])

Create a robot platform with a specified waypoint trajectory in the scenario. Define the mesh for the
robot platform.

traj = waypointTrajectory("Waypoints",[0 -10 0; 10 0 0; -10 10 0; 0 -10 0], ...
                          "TimeOfArrival",[0 0.33 0.66 1], ...
                          "ReferenceFrame","ENU");
platform = robotPlatform("Robot",scenario, ...
                         BaseTrajectory=traj);
updateMesh(platform,"GroundVehicle",Scale=3);

Simulate and visualize the scenario.

setup(scenario); 
idx = 1;
while advance(scenario)
    motion(idx,:) = read(platform);
    show3D(scenario); 
    drawnow update
    idx = idx+1;
end
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restart(scenario);

Input Arguments
platform — Robot platform in scenario
robotPlatform object

Robot platform in the scenario, specified as a robotPlatform object.

Output Arguments
motion — Robot platform motion at current instance in scenario
16-element vector

Robot platform motion at the current instance in the scenario, returned as a 16-element vector with
these elements in order:

• [x y z] — Positions in xyz-axes in meters.
• [vx vy vz] — Velocities in xyz-directions in meters per second.
• [ax ay az] — Accelerations in xyz-directions in meters per second.
• [qw qx qy qz] — Quaternion vector for orientation.
• [wx wy wz] — Angular velocities in radians per second.
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Data Types: double

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
move | updateMesh
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updateMesh
Update robot platform body mesh

Syntax
updateMesh(platform,type,Name=Value)

Description
updateMesh(platform,type,Name=Value) updates the body mesh of the robot platform with the
specified mesh type and specifies additional options using one or more name-value pair arguments.

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.

ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);
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Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Input Arguments
platform — Robot platform in scenario
robotPlatform object

Robot platform in the scenario, specified as a robotPlatform object.

type — Type of mesh
"Cuboid" | "GroundVehicle" | "RigidBodyTree" | "Custom"

Type of mesh, specified as "Cuboid", "GroundVehicle", "RigidBodyTree", or "Custom".
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example:

Position — Relative mesh position in body frame
[0 0 0] (default) | vector of form [x y z]
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Relative mesh position in the body frame, specified as a vector of the form [x y z] in meters.
Data Types: single | double

Orientation — Relative mesh orientation in body frame
[1 0 0 0] (default) | vector of form [w x y z] | quaternion object

Relative mesh orientation in the body frame, specified as a quaternion vector of the form [w x y z]
or a quaternion object.
Data Types: single | double

Offset — Transformation of mesh relative to body frame
4-by-4 homogeneous transformation matrix

Transformation of mesh relative to the body frame, specified as a 4-by-4 homogeneous transformation
matrix. The matrix maps points in the platform mesh frame to points in the body frame.
Data Types: single | double

Color — Robot platform body mesh color
[1 0 0] (default) | RGB triplet

Robot platform body mesh color, specified as a RGB triplet, except for the rigid body mesh.
Data Types: single | double

Faces — Faces of custom robot platform mesh
N-by-3 matrix of positive integers

Faces of the custom robot platform mesh, specified as an N-by-3 matrix of positive integers. The three
elements in each row are the indices of the three points in the vertices forming a triangle face. N is
the number of faces.
Data Types: single | double

Vertices — Vertices of custom robot platform mesh
N-by-3 matrix of real scalars

Vertices of the custom robot platform mesh, specified as an N-by-3 matrix of real scalars. The first,
second, and third element of each row represents the x-, y-, and z-position of each vertex,
respectively. N is the number of vertices.
Data Types: single | double

Size — Size of cuboid robot platform mesh
[1 0.5 0.3] (default) | vector of form [xlength ylength zlength]

Size of the cuboid robot platform mesh, specified as a vector of form [xlength ylength zlength]
in meters.
Data Types: single | double

Scale — Scale of ground vehicle robot platform mesh
1 (default) | scalar

Scale of the ground vehicle robot platform mesh, specified as a scalar. Scale is unitless.
Data Types: single | double
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Object — Rigid body tree robot platform
[] (default) | rigidBodyTree object

Rigid body tree robot platform, specified as a rigidBodyTree object.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
move | read
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addInertialFrame
Define new inertial frame in robot scenario

Syntax
addInertialFrame(scenario,base,name,position,orientation)
addInertialFrame(scenario,base,name,tform)

Description
addInertialFrame(scenario,base,name,position,orientation) adds a new inertial frame
to the robot scenario by specifying the base, name, position, and orientation of the new inertial
frame.

addInertialFrame(scenario,base,name,tform) adds a new inertial frame to the robot
scenario by specifying the base, name, and transformation matrix of the new inertial frame.

Examples

Add Inertial Frame to Robot Scenario

Create a robot scenario. By default, the inertial frames are the ENU and the NED frames.

scenario = robotScenario

scenario = 
  robotScenario with properties:

           UpdateRate: 10
             StopTime: Inf
    HistoryBufferSize: 100
    ReferenceLocation: [0 0 0]
         MaxNumFrames: 50
          CurrentTime: 0
            IsRunning: 0
        TransformTree: [1x1 transformTree]
       InertialFrames: ["ENU"    "NED"]
               Meshes: {}
            Platforms: [0x0 robotPlatform]

Add a new inertial frame named robot to the scenario.

addInertialFrame(scenario,"ENU","robot",eul2tform([pi/4 0 0]))

You can now use the robot frame as a reference frame to define other objects in the scenario.

scenario.InertialFrames

ans = 1x3 string
    "ENU"    "NED"    "robot"

 addInertialFrame
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Add plane and box mesh with reference frame in the scenario.

addMesh(scenario,"Plane",Size=[10 10],Color=[0 1 0])
addMesh(scenario,"Box",Position=[-2 -2 0.5],ReferenceFrame="robot")

Visualize the scenario.

show3D(scenario);

Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

base — Base of new inertial frame
string scalar

Base of the new inertial frame, specified as a string scalar. The base frame must be defined in the
scenario in advance.
Example: "ENU"
Data Types: char | string
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name — Name of new inertial frame
string scalar

Name of the new inertial frame, specified as a string scalar.
Example: "newFrame"
Data Types: char | string

position — Position of new inertial frame
1-by-3 vector

Position of the new inertial frame with respect to the base frame (specified in the base argument),
specified as a 1-by-3 vector in meters.
Data Types: single | double

orientation — Orientation of new inertial frame
quaternion object | 1-by-4 quaternion vector

Orientation of the new inertial frame with respect to the base frame (specified in the base
argument), specified as a quaternion object or a 1-by-4 quaternion vector. The specified orientation
is from the base frame to the new inertial frame.
Data Types: single | double

tform — Transformation matrix of new inertial frame
4-by-4 homogeneous transform matrix

Transformation matrix that maps points in the new frame (specified in the base argument) to the
base frame, specified as a 4-by-4 homogeneous transform matrix that maps points in the base frame
to the new inertial frame.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]
Data Types: single | double

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addMesh | advance | binaryOccupancyMap | restart | setup | show3D | updateSensors
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addMesh
Add new static mesh to robot scenario

Syntax
addMesh(scenario,type,Name=Value)

Description
addMesh(scenario,type,Name=Value) adds a static mesh to the robot scenario by specifying the
mesh type and specifies additional options using name-value pair arguments.

Examples

Add Meshes to Robot Scenario

Create a robot Scenario.

scenario = robotScenario;

Add a plane, box, cylinder, and sphere mesh to the scenario.

addMesh(scenario,"Plane",Size=[15 15],Color=[0.7 0.7 0.7])
addMesh(scenario,"Box",Position=[-3 -3 0.5],Color=[1 0.5 0])
addMesh(scenario,"Cylinder",Position=[-2 4 0.5],Color=[0 0 1])
addMesh(scenario,"Sphere",Position=[2 7 1],Color=[0 1 0])

Add custom mesh to the scenario with vertices and faces.

vertices = [0 0 0; 0 0 2; 0 2 0; 0 2 2; 2 0 0; 2 0 2; 2 2 0; 2 2 2];
faces = [1 3 7; 1 7 5; 1 6 2; 1 5 6; 1 2 4; 1 4 3; ...
         3 4 8; 3 8 7; 5 8 6; 5 7 8; 2 8 4; 2 6 8];
addMesh(scenario,"Custom",Vertices=vertices,Faces=faces,Position=[4 -4 1])

Visualize the scenario.

show3D(scenario);
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Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

type — Type of mesh
"Box" | "Cylinder" | "Plane" | "Sphere" | "Custom"

Type of mesh, specified as "Box", "Cylinder", "Plane", "Sphere", or "Custom".
Data Types: char | string

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: addMesh(scenario,"Box",Position=[-3 -3 0.5])

Color — Mesh color
[1 0 0] (default) | RGB triplet
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Mesh color, specified as a RGB triplet.
Data Types: single | double

ReferenceFrame — Reference frame of mesh geometry
"ENU" (default) | name of defined inertial frame

Reference frame of the geometry input, specified as an inertial frame name defined in the
InertialFrames property of the robotScenario object. You can add new inertial frames to the
scenario using the addInertialFrame object function.

The scenario only accepts frames that have z-axis rotation with respect to the "ENU" frame.
Data Types: char | string

IsBinaryOccupied — Occupied state of binary occupancy map
false (default) | true

Occupied state of binary occupancy map, specified as true or false. Set the value as true if static
mesh is considered as an obstacle in the scenario and it is incorporated in the binary occupancy map.
Data Types: logical

Position — Position of static mesh in robot scenario
[0 0 0] (default) | vector of form [x y z]

Position of static mesh in robot scenario, specified as a vector of the form [x y z] in meters.
Data Types: single | double

Size — Size of static mesh
scalar | vector

Size of static mesh, specified as a scalar or vector of geometry parameters, except for the custom
mesh. Depending on the type input, the geometry parameters have different forms:

type Input Argument Geometry Parameters Description
"Box" [xlength ylength

zlength]
Create a box with a specified
side lengths in the x-, y-, and z-
directions.

Default: [1 1 1]
"Cylinder" [radius length] Create a cylinder with a

specified radius and length.

Default: [1 1]
"Plane" [xlength ylength] Create a plane with a specified

side lengths in the x- and y-
directions.

Default: [1 1]
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type Input Argument Geometry Parameters Description
"Sphere" radius Create a sphere with a specified

radius.

Default: 1

Data Types: single | double

Faces — Faces of custom static mesh
N-by-3 matrix of positive integers

Faces of the custom static mesh, specified as an N-by-3 matrix of positive integers. The three
elements in each row are the indices of the three points in the vertices forming a triangle face. N is
the number of faces.
Data Types: single | double

Vertices — Vertices of custom static mesh
N-by-3 matrix of real scalars

Vertices of the custom static mesh, specified as an N-by-3 matrix of real scalars. The first, second, and
third element of each row represents the x-, y-, and z-position of each vertex, respectively. N is the
number of vertices.
Data Types: single | double

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addInertialFrame | advance | binaryOccupancyMap | restart | setup | show3D |
updateSensors
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advance
Advance robot scenario simulation by one time step

Syntax
isrunning = advance(scenario)

Description
isrunning = advance(scenario) advances the robot scenario simulation by one time step. The
UpdateRate property of the robotScenario object determines the time step during simulation. The
function returns the running status of the simulation. The function only updates a platform location if
the platform has an assigned trajectory.

Examples

Simulate Simple Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a cylinder as meshes.

addMesh(scenario,"Plane",Size=[30 30],Color=[0.7 0.7 0.7])
addMesh(scenario,"Cylinder",Position=[-2 4 0.5],Color=[0 1 1])

Create a robot platform with a specified waypoint trajectory in the scenario. Define the mesh for the
robot platform.

traj = waypointTrajectory("Waypoints",[0 -10 0; 10 0 0; -10 10 0; 0 -10 0], ...
                          "TimeOfArrival",[0 0.33 0.66 1], ...
                          "ReferenceFrame","ENU");
platform = robotPlatform("Robot",scenario, ...
                         BaseTrajectory=traj);
updateMesh(platform,"GroundVehicle",Scale=3);

Simulate and visualize the scenario.

setup(scenario); 
idx = 1;
while advance(scenario)
    motion(idx,:) = read(platform);
    show3D(scenario); 
    drawnow update
    idx = idx+1;
end
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restart(scenario);

Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

Output Arguments
isrunning — Running state of simulation
true | false

Running state of the simulation, returned as true or false. If isrunning is returned as true, then
the simulation is running. If isrunning is returned as false, the simulation has stopped. A
simulation stops when the stop time is reached.

Version History
Introduced in R2022a
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See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addInertialFrame | addMesh | binaryOccupancyMap | restart | setup | show3D |
updateSensors

3 Methods
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binaryOccupancyMap
Create 2-D binary occupancy map from robot scenario

Syntax
map = binaryOccupancyMap(scenario,Name=Value)

Description
map = binaryOccupancyMap(scenario,Name=Value) creates binary occupancy map based on
mesh elements from scenario defined with IsBinaryOccupied status true. The mesh elements are
processed in the 3-D convex hull form. Further, mesh element is considered as occupied region only if
it lies inside map height limits and map size. These properties are specified by one or more name-
value pair arguments.

Examples

Create 2-D Binary Occupancy Map from Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=1,StopTime=10);

Add a plane, box and cylinder mesh in the scenario.

addMesh(scenario,"Plane",Size=[10 10],Color=[0.7 0.7 0.7])
addMesh(scenario,"Box",Position=[-2 -2 0.5],IsBinaryOccupied=true)
addMesh(scenario,"Cylinder",Position=[2 2 0.5],IsBinaryOccupied=true)

Visualize the scenario.

show3D(scenario);

 binaryOccupancyMap
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Get the 2-D occupancy map.

occupancyMap = binaryOccupancyMap(scenario,MapHeightLimits=[-1 1], ...
                                  GridOriginInLocal=[-5 -5]);

Visualize the 2-D occupancy map.

figure
show(occupancyMap);
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Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: map = binaryOccupancyMap(scenario,MapResolution=15)

GridOriginInLocal — Origin of occupancy map grid in local coordinates
[0 0] (default) | vector of the form [xLocal yLocal]

Origin of occupancy map grid in local coordinates, specified as a two-element vector of the form
[xLocal yLocal] in meters.
Data Types: single | double

 binaryOccupancyMap
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HeightResolution — Resolution of occupancy map grid in z-axis
10 (default) | scalar integer

Resolution of occupancy map grid in z-axis, specified as a scalar integer in cells per meter.
Data Types: single | double

MapHeightLimits — Minimum and maximum values of map height
[0 1] (default) | vector of the form [Hmin Hmax]

Minimum and maximum values of map height, specified as a two-element vector of the form [Hmin
Hmax] in meters, from which static meshes are considered for occupancy map grid.
Data Types: single | double

MapResolution — Resolution of occupancy map grid in xy-axis
10 (default) | scalar integer

Resolution of occupancy map grid in xy-axis, specified as a scalar integer in cells per meter.
Data Types: single | double

MapSize — Size of occupancy map grid
[10 10] (default) | vector of the form [width height]

Size of occupancy map grid, specified as a two-element vector of the form [width height] in
meters.
Data Types: single | double

Output Arguments
map — Binary occupancy map from robot scenario
binaryOccupancyMap object

Binary occupancy map from robot scenario, returned as a binaryOccupancyMap object.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor | binaryOccupancyMap

Functions
addInertialFrame | addMesh | advance | restart | setup | show3D | updateSensors
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restart
Reset simulation of robot scenario

Syntax
restart(scenario)

Description
restart(scenario) resets the simulation of the robot scenario scene. The function resets poses of
the platforms and sensor readings to NaN, resets the CurrentTime property of the scenario to 0, and
resets the IsRunning property of the scenario to false.

Examples

Simulate Simple Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a cylinder as meshes.

addMesh(scenario,"Plane",Size=[30 30],Color=[0.7 0.7 0.7])
addMesh(scenario,"Cylinder",Position=[-2 4 0.5],Color=[0 1 1])

Create a robot platform with a specified waypoint trajectory in the scenario. Define the mesh for the
robot platform.

traj = waypointTrajectory("Waypoints",[0 -10 0; 10 0 0; -10 10 0; 0 -10 0], ...
                          "TimeOfArrival",[0 0.33 0.66 1], ...
                          "ReferenceFrame","ENU");
platform = robotPlatform("Robot",scenario, ...
                         BaseTrajectory=traj);
updateMesh(platform,"GroundVehicle",Scale=3);

Simulate and visualize the scenario.

setup(scenario); 
idx = 1;
while advance(scenario)
    motion(idx,:) = read(platform);
    show3D(scenario); 
    drawnow update
    idx = idx+1;
end

 restart
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restart(scenario);

Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addInertialFrame | addMesh | advance | binaryOccupancyMap | setup | show3D |
updateSensors
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setup
Prepare robot scenario for simulation

Syntax
setup(scenario)

Description
setup(scenario) prepares the robot scenario for simulation, sets poses of the platforms to their
initial values, and generates initial sensor readings.

Examples

Simulate Simple Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a cylinder as meshes.

addMesh(scenario,"Plane",Size=[30 30],Color=[0.7 0.7 0.7])
addMesh(scenario,"Cylinder",Position=[-2 4 0.5],Color=[0 1 1])

Create a robot platform with a specified waypoint trajectory in the scenario. Define the mesh for the
robot platform.

traj = waypointTrajectory("Waypoints",[0 -10 0; 10 0 0; -10 10 0; 0 -10 0], ...
                          "TimeOfArrival",[0 0.33 0.66 1], ...
                          "ReferenceFrame","ENU");
platform = robotPlatform("Robot",scenario, ...
                         BaseTrajectory=traj);
updateMesh(platform,"GroundVehicle",Scale=3);

Simulate and visualize the scenario.

setup(scenario); 
idx = 1;
while advance(scenario)
    motion(idx,:) = read(platform);
    show3D(scenario); 
    drawnow update
    idx = idx+1;
end

 setup
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restart(scenario);

Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addInertialFrame | addMesh | advance | binaryOccupancyMap | restart | show3D |
updateSensors
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show3D
Visualize robot scenario in 3-D

Syntax
[ax,plottedFrames] = show3D(scenario)
[ax,plottedFrames] = show3D(scenario,time)
[ax,plottedFrames] = show3D( ___ ,Name=Value)

Description
[ax,plottedFrames] = show3D(scenario) visualizes latest states of the platforms and sensors
in the robot scenario scene along with all static meshes. The function also returns the axes on which
the scene is plotted and the frames on which each object is plotted.

[ax,plottedFrames] = show3D(scenario,time) visualizes the robot scenario at the specified
time.

[ax,plottedFrames] = show3D( ___ ,Name=Value) specifies additional options using name-
value pair arguments.

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

 show3D
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Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.

ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);

Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

time — Time stamp
nonnegative scalar

Time stamp at which to show the scenario, specified as a nonnegative scalar. The time stamp must
already be saved in the scenario. To change the number of saved time stamps, use the
HistoryBufferSize property of the robotScenario object, scenario.
Data Types: single | double

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: ax = show3D(scenario,FastUpdate=true)

 show3D
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Parent — Parent axes for plotting
axes object | uiaxes object

Parent axes for plotting, specified as an axes object or a uiaxes object.

FastUpdate — Enable updating from previous map
false (default) | true

Enable updating from previous map, specified as true or false. When specified as true, the
function plots the map via a lightweight update to the previous map in the figure. When specified as
false, the function plots the whole scene on the figure every time.
Example: FastUpdate=true
Data Types: logical

View — View point of plot
"3D" (default) | "Top" | "Side"

View point of plot, specified as "3D", "Top", or "Side".
Example: View="Side"
Data Types: string

Output Arguments
ax — Axes on which scenario is plotted
axes object | uiaxes object

Axes on which the scenario is plotted, returned as an axes object or a uiaxes object.

plottedFrames — Plotted frame information
structure

Plotted frame information, returned as a structure of hgtransform objects.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addInertialFrame | addMesh | advance | binaryOccupancyMap | restart | setup |
updateSensors
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updateSensors
Update sensor readings in robot scenario

Syntax
updateSensors(scenario)

Description
updateSensors(scenario) updates all sensor readings based on latest states of all platforms in
the robot scenario, scenario.

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.

ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);

 updateSensors
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Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor

Functions
addInertialFrame | addMesh | advance | binaryOccupancyMap | restart | setup | show3D

 updateSensors
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read
Gather latest reading from robot sensor

Syntax
[isUpdated,t,sensorReadings] = read(sensor)

Description
[isUpdated,t,sensorReadings] = read(sensor) gathers the simulated sensor output sensor
readings from the latest update of the robot platform associated with the specified sensor sensor.
The function returns an indicator isUpdated of whether the reading was updated at the simulation
step in the scenario with timestamp t.

Examples

Create and Simulate Robot Scenario

Create a robot scenario.

scenario = robotScenario(UpdateRate=100,StopTime=1);

Add the ground plane and a box as meshes.

addMesh(scenario,"Plane",Size=[3 3],Color=[0.7 0.7 0.7]);
addMesh(scenario,"Box",Size=[0.5 0.5 0.5],Position=[0 0 0.25], ...
        Color=[0 1 0])

Create a waypoint trajectory for the robot platform using an ENU reference frame.

waypoint = [0 -1 0; 1 0 0; -1 1 0; 0 -1 0];
toa = linspace(0,1,length(waypoint));
traj = waypointTrajectory("Waypoints",waypoint, ...
                          "TimeOfArrival",toa, ...
                          "ReferenceFrame","ENU");

Create a rigidBodyTree object of the TurtleBot 3 Waffle Pi robot with loadrobot.

robotRBT = loadrobot("robotisTurtleBot3WafflePi");

Create a robot platform with trajectory.

platform = robotPlatform("TurtleBot",scenario, ...
                         BaseTrajectory=traj);

Set up platform mesh with the rigidBodyTree object.

updateMesh(platform,"RigidBodyTree",Object=robotRBT)

Create an INS sensor object and attach the sensor to the platform.
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ins = robotSensor("INS",platform,insSensor("RollAccuracy",0), ...
                  UpdateRate=scenario.UpdateRate);

Visualize the scenario.

[ax,plotFrames] = show3D(scenario);
axis equal
hold on

In a loop, step through the trajectory to output the position, orientation, velocity, acceleration, and
angular velocity.

count = 1;
while ~isDone(traj)
    [Position(count,:),Orientation(count,:),Velocity(count,:), ...
     Acceleration(count,:),AngularVelocity(count,:)] = traj();
    count = count+1;
end

Create a line plot for the trajectory. First create the plot with plot3, then manually modify the data
source properties of the plot. This improves the performance of the plotting.

trajPlot = plot3(nan,nan,nan,"Color",[1 1 1],"LineWidth",2);
trajPlot.XDataSource = "Position(:,1)";
trajPlot.YDataSource = "Position(:,2)";
trajPlot.ZDataSource = "Position(:,3)";

Set up the simulation. Then, iterate through the positions and show the scene each time the INS
sensor updates. Advance the scene, move the robot platform, and update the sensors.

setup(scenario)
for idx = 1:count-1
    % Read sensor readings.
    [isUpdated,insTimestamp(idx,1),sensorReadings(idx)] = read(ins);
    if isUpdated
        % Use fast update to move platform visualization frames.
        show3D(scenario,FastUpdate=true,Parent=ax);
        % Refresh all plot data and visualize.
        refreshdata
        drawnow limitrate
    end
    % Advance scenario simulation time.
    advance(scenario);
    % Update all sensors in the scene.
    updateSensors(scenario)
end
hold off
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Input Arguments
sensor — Robot sensor added to platform in scenario
robotSensor object

Robot sensor added to platform in scenario, specified as a robotSensor object.

Output Arguments
isUpdated — Sensor reading update indicator
0 or false | 1 or true

Sensor reading update indicator, returned as a logical 0 (false) or 1 (true). If the sensor reading
updated at the current simulation step, the function returns this argument as true.
Data Types: logical

t — Timestamp of generated sensor reading
scalar in seconds

Timestamp of the generated sensor reading, returned as a scalar in seconds.
Data Types: double
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sensorReadings — Simulated sensor readings
gpsSensor output | insSensor output | robotLidarPointCloudGenerator output

Simulated sensor readings, which depends on the type of sensor specified in the sensor input
argument. See the Usage syntax for the appropriate gpsSensor, insSensor, or
robotLidarPointCloudGenerator System object.

Version History
Introduced in R2022a

See Also
Objects
robotPlatform | robotScenario | robotSensor | robotLidarPointCloudGenerator |
gpsSensor | insSensor | robotics.SensorAdaptor
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getEmptyOutputs
Class: robotics.SensorAdaptor
Package: robotics

Return empty sensor outputs without sensor inputs

Syntax
out = getEmptyOutputs(sensorObj)

Description
out = getEmptyOutputs(sensorObj) gets empty outputs when the sensor is not initialized using
setup function.

Input Arguments
sensorObj — Robot sensor model
object of subclass of robotics.SensorAdaptor

Robot sensor model, specified as an object of a subclass of robotics.SensorAdaptor.

Output Arguments
out — Empty sensor outputs
cell array

Empty sensor outputs, returned as a cell array of variables that matches the varargout output of
the read function.

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.

createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.
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edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 

Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];

wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.

chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.
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chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);

figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on

In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
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rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 

while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)

        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
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        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);

    updateSensors(scenario);
end

Version History
Introduced in R2022b
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See Also
Functions
setup | read | reset | robotics.SensorAdaptor.getMotion |
createCustomRobotSensorTemplate

Objects
robotics.SensorAdaptor | robotScenario | robotPlatform | robotSensor
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robotics.SensorAdaptor.getMotion
Class: robotics.SensorAdaptor
Package: robotics

Get sensor motion in platform reference frame

Syntax
motion = getMotion(scenario,platform,sensor,time)

Description
motion = getMotion(scenario,platform,sensor,time) return the sensor motion in the
platform reference frame for the specified simulation time.

Input Arguments
scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object. This scenario contains the robotPlatform
object platform, which also contains the sensor object sensorObj, which is a subclass of
robotics.SensorAdaptor.

platform — Robot platform
robotPlatform object

Robot platform, specified as a robotPlatform object. This platform contains the sensor object
sensorObj, which is a subclass of robotics.SensorAdaptor.

sensor — Robot sensor to add to platform in scenario
robotSensor object

Robot sensor to add to a platform in a scenario, specified as a robotSensor object.

time — Simulation time
positive scalar

Simulation time, specified as a positive scalar in seconds.
Data Types: double

Output Arguments
motion — Robot platform motion at current instance in scenario
16-element vector

Robot platform motion at the current instance in a robot scenario, returned as a 16-element vector
with these elements in this order:
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• [x y z] — Positions in the xyz-axes in meters
• [vx vy vz] — Velocities in the xyz-directions in meters per second
• [ax ay az] — Accelerations in the xyz-directions in meters per second squared
• [qw qx qy qz] — Quaternion vector for orientation
• [wx wy wz] — Angular velocities in radians per second

Data Types: double

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.

createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.

edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 

Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];

wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
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traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.

chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.

chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);

figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on
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In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 

while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)
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        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);

    updateSensors(scenario);
end
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Version History
Introduced in R2022b

See Also
Functions
setup | read | reset | getEmptyOutputs | createCustomRobotSensorTemplate

Objects
robotics.SensorAdaptor | robotScenario | robotPlatform | robotSensor
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read
Class: robotics.SensorAdaptor
Package: robotics

Read from custom sensor model

Syntax
varargout = read(sensorObj,scenario,platform,sensor,time)

Description
varargout = read(sensorObj,scenario,platform,sensor,time) reads sensor data from
the sensor model sensorObj. Specify the robot scenario, platform, sensor, and simulation time. The
function returns the sensor readings from the implemented sensor model.

Input Arguments
sensorObj — Robot sensor model
object of subclass of robotics.SensorAdaptor

Robot sensor model, specified as an object of a subclass of robotics.SensorAdaptor.

scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object. This scenario contains the robotPlatform
object platform, which also contains the sensor object sensorObj, which is a subclass of
robotics.SensorAdaptor.

platform — Robot platform
robotPlatform object

Robot platform, specified as a robotPlatform object. This platform contains the sensor object
sensorObj, which is a subclass of robotics.SensorAdaptor.

sensor — Robot sensor to add to platform in scenario
robotSensor object

Robot sensor to add to a platform in a scenario, specified as a robotSensor object.

time — Simulation time
positive scalar

Simulation time, specified as a positive scalar in seconds.
Data Types: double
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Output Arguments
varargout — Variable-length output argument list
varargout

Variable-length output argument list, returned as varargout.

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.

createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.

edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 

Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];

wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
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    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.

chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.

chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);

figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on

3 Methods

3-494



In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 

while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)
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        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);

    updateSensors(scenario);
end
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Version History
Introduced in R2022b

See Also
Functions
setup | reset | getEmptyOutputs | robotics.SensorAdaptor.getMotion |
createCustomRobotSensorTemplate

Objects
robotics.SensorAdaptor | robotScenario | robotPlatform | robotSensor
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reset
Class: robotics.SensorAdaptor
Package: robotics

Reset custom sensor model

Syntax
reset(sensorObj)

Description
reset(sensorObj) resets the sensor model state and releases internal resources if needed.

Input Arguments
sensorObj — Robot sensor model
object of subclass of robotics.SensorAdaptor

Robot sensor model, specified as an object of a subclass of robotics.SensorAdaptor.

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.

createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.

edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 
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Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];

wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.

chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.

chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
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    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);

figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on

In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 
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while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)

        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
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    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);

    updateSensors(scenario);
end

Version History
Introduced in R2022b

See Also
Functions
setup | read | getEmptyOutputs | robotics.SensorAdaptor.getMotion |
createCustomRobotSensorTemplate

Objects
robotics.SensorAdaptor | robotScenario | robotPlatform | robotSensor
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setup
Class: robotics.SensorAdaptor
Package: robotics

Set up custom sensor model

Syntax
setup(sensorObj,scenario,platform)

Description
setup(sensorObj,scenario,platform) initializes the sensor model with information from the
robot scenario and platform to which the sensor is mounted.

Input Arguments
sensorObj — Robot sensor model
object of subclass of robotics.SensorAdaptor

Robot sensor model, specified as an object of a subclass of robotics.SensorAdaptor.

scenario — Robot scenario
robotScenario object

Robot scenario, specified as a robotScenario object. This scenario contains the robotPlatform
object platform, which also contains the sensor object sensorObj, which is a subclass of
robotics.SensorAdaptor.

platform — Robot platform
robotPlatform object

Robot platform, specified as a robotPlatform object. This platform contains the sensor object
sensorObj, which is a subclass of robotics.SensorAdaptor.

Examples

Simulate Ultrasonic Sensors Mounted on Mobile Robots

This example focuses on creating and mounting an ultrasonic sensor on a mobile robot in a
robotScenario. The ultrasonicDetectionGenerator from the Automated Driving Toolbox cannot be
used directly with robotScenario. We will be implementing a custom sensor adaptor for the
ultrasonicDetectionGenerator that makes it compatible with robotScenario. The sensor will be used
to position a mobile robot correctly at a charging station.

Create Custom Sensor Adaptor

Use the createCustomRobotSensorTemplate function to generate a template sensor and update
it to adapt an ultrasonicDetectionGenerator object for usage in Robot scenario.
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createCustomRobotSensorTemplate

This example provides the adaptor class CustomUltrasonicSensor, which can be viewed using the
following command.

edit CustomUltrasonicSensor.m

Use the Sensor Adaptor in Robot Scenario Simulation

Create a robotScenario object with a sample rate of 10.

sampleRate = 10;
scenario = robotScenario(UpdateRate=sampleRate); 

Add a plane mesh to show the warehouse floor.

addMesh(scenario,"Plane",Position=[5 0 0],Size=[20 12],Color=[0.7 0.7 0.7]);

Create a waypointTrajectory that traverses a set of wapoints to the charging station and use the
lookupPose method of the waypointTrajectory object to fetch the pose of the robot along the
trajectory.

startPosition = [-3 -3];
chargingPosition = [13 0];

wPts = [[startPosition 0.1]; ...
    5 0 0.1; ...
    10 0 0.1; ...
    13.75 0 0.1]; %Charging station

toa = [0 4 7 10];
traj = waypointTrajectory(Waypoints=wPts,...
    TimeOfArrival=toa, ReferenceFrame='ENU', ...
    SampleRate=sampleRate);
[pos, orient, vel, acc, angvel] = traj.lookupPose(0:1/sampleRate:10);

Add a robotPlatform to the scene for our mobile robot. Load the Clearpath Husky model for the
rigidBodyTree of the robotPlatform. Also add cuboid meshes to denote obstacles in the scene. Add a
1x1 plane to denote where the charging station is.

robot = robotPlatform("rst", scenario,...
    RigidBodyTree=loadrobot("clearpathHusky"), ...
    InitialBasePosition=pos(1,:), InitialBaseOrientation=compact(orient(1)));

addMesh(scenario,"Box",Position=[3  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[3 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7  5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[7 -5 2],Size=[4 2 4],Color=[1 0.5 0.25],IsBinaryOccupied=true);
addMesh(scenario,"Box",Position=[-3  -5 0.5],Size=[1 1 1],Color=[0.1 0.1 0.1]);

% Plane to denote Charging station location
addMesh(scenario,"Plane",Position=[13 0 .05],Size=[1 1],Color=[0 1 0]);

Create the charging station using a robotPlatform object. The robotPlatform allows us to fetch the
traform between the object and the sensor for use in the custom sensor read method. Here, the
charging station can be modeled using a cuboid.The robot has to reach within 5cm of the surface of
the charging station to start charging.
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chargeStation = robotPlatform("chargeStation", scenario,InitialBasePosition=[13.75 0 0]);
chargeStation.updateMesh("Cuboid",Size=[0.5 1 1], Color=[0 0.8 0]);

The ultrasonic sensor model requires inputs of the profile of the obstacles to be detected. The profile
struct includes information about the dimensions of the obstacle.

chargingStationProfile = struct("Length", 0.5, "Width", 1, "Height", 1, 'OriginOffset', [0 0 0]);

Create the ultrasonic sensor using the ultrasonicDetectionGenerator object and set its mounting
location to [0, 0, 0], detection range to [0.03 0.04 5] and field of view to [70, 35]. Also pass in the
profile of the charging station that was created earlier.

ultraSonicSensorModel = ultrasonicDetectionGenerator(MountingLocation=[0 0 0], ...
    DetectionRange=[0.03 0.04 5], ...
    FieldOfView=[70, 35], ...
    Profiles=chargingStationProfile);

Create a robotSensor object that uses the custom sensor adaptor CustomUltrasonicSensor. The
adaptor uses the ultrasonic sensor model created above. The mounting location will be at the front of
the robot.

ult = robotSensor("UltraSonic", robot, ...
    CustomUltrasonicSensor(ultraSonicSensorModel), ...
    MountingLocation=[0.5 0 0.05]);

figure(1);
ax = show3D(scenario);
view(-65,45)
light
grid on
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In this scene, the mobile robot will follow the trajectory to the charging station. When the ultrasonic
sensor comes within a range of 20cm of the charging station, then mobile robot advance at a slower
rate of 1cm per frame towards the charging station. When the robot is within 5cm of the surface of
the charging station, it stops and the charging starts. The simulation ends when the charging starts.

isCharging = false;
i = 1;

setup(scenario); 

while ~isCharging
    [isUpdated, t, det, isValid] = read(ult);
    
    figure(1);
    show3D(scenario);
    view(-65,45)
    light
    grid on

    % Read the motion vector of the robot from the platform ground truth
    % This motion vector will be used only for plotting graphic elements
    pose = robot.read();
    rotAngle = quat2eul(pose(10:13));
    hold on

    if ~isempty(det)
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        % Distance to object
        distance = det{1}.Measurement;

        % Plot a red shpere where the ultrasonic sensor detects an object
        exampleHelperPlotDetectionPoint(scenario, ...
            det{1}.ObjectAttributes{1}.PointOnTarget, ...
            ult.Name, ...
            pose);
        
        displayText = ['Distance = ',num2str(distance)];
    else
        distance = inf;
        displayText = 'No object detected!';
    end

    % Plot a cone to represent the field of view and range of the ultrasonic sensor
    exampleHelperPlotFOVCylinder(pose, ultraSonicSensorModel.DetectionRange(3));
    hold off

    if distance <= 0.2
        % Advance in steps of 1cm when the robot is within 20cm of the charging station
        currentMotion = lastMotion;
        currentMotion(1) = currentMotion(1) + 0.01;

        move(robot,"base",currentMotion);
        lastMotion = currentMotion;
        displayText = ['Detected Charger! Distance = ',num2str(distance)];
        if distance <= 0.05
            % The robot is charging when it is within 5cm of the charging station
            displayText = ['Charging!! Distance = ',num2str(distance)];
            isCharging = true;
        end
    else
        % Follow the waypointTrajectory to the vicinity of the charging station
        if i<=length(pos)
            motion = [pos(i,:), vel(i,:), acc(i,:), ...
                compact(orient(i)), angvel(i,:)];
            move(robot,"base",motion);
            lastMotion = motion;
            i=i+1;
        end
    end

    % Display the distance to the charging station detected by the ultrasonic sensor
    t = text(15, 0, displayText, "BackgroundColor",'yellow');
    t(1).Color = 'black';
    t(1).FontSize = 10;

    advance(scenario);

    updateSensors(scenario);
end
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Version History
Introduced in R2022b

See Also
Functions
read | reset | getEmptyOutputs | robotics.SensorAdaptor.getMotion |
createCustomRobotSensorTemplate

Objects
robotics.SensorAdaptor | robotScenario | robotPlatform | robotSensor
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copy
Create copy of particle filter

Syntax
b = copy(a)

Description
b = copy(a) copies each element in the array of handles, a, to the new array of handles, b.

The copy method does not copy dependent properties. MATLAB does not call copy recursively on
any handles contained in property values. MATLAB also does not call the class constructor or
property-set methods during the copy operation.

Input Arguments
a — Object array
handle

Object array, specified as a handle.

Output Arguments
b — Object array containing copies of the objects in a
handle

Object array containing copies of the object in a, specified as a handle.

b has the same number of elements and is the same size and class of a. b is the same class as a. If a
is empty, b is also empty. If a is heterogeneous, b is also heterogeneous. If a contains deleted handles,
then copy creates deleted handles of the same class in b. Dynamic properties and listeners
associated with objects in a are not copied to objects in b.

Version History
Introduced in R2016a

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict |
correct

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
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correct
Adjust state estimate based on sensor measurement

Syntax
[stateCorr,stateCov] = correct(pf,measurement)
[stateCorr,stateCov] = correct(pf,measurement,varargin)

Description
[stateCorr,stateCov] = correct(pf,measurement) calculates the corrected system state
and its associated uncertainty covariance based on a sensor measurement at the current time step.
correct uses the MeasurementLikelihoodFcn property from the particle filter object, pf, as a
function to calculate the likelihood of the sensor measurement for each particle. The two inputs to the
MeasurementLikelihoodFcn function are:

1 pf – The stateEstimatorPF object, which contains the particles of the current iteration
2 measurement – The sensor measurements used to correct the state estimate

The MeasurementLikelihoodFcn function then extracts the best state estimate and covariance
based on the setting in the StateEstimationMethod property.

[stateCorr,stateCov] = correct(pf,measurement,varargin) passes all additional
arguments in varargin to the underlying MeasurementLikelihoodFcn after the first three
required inputs.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
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            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

measurement — Sensor measurements
array

Sensor measurements, specified as an array. This input is passed directly into the
MeasurementLikelihoodFcn property of pf. It is used to calculate the likelihood of the sensor
measurement for each particle.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is passed directly
into the MeasurementLikelihoodFcn property of pf. It is used to calculate the likelihood of the
sensor measurement for each particle. When you call:

correct(pf,measurement,arg1,arg2)

MATLAB essentially calls measurementLikelihoodFcn as:

measurementLikelihoodFcn(pf,measurement,arg1,arg2)
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Output Arguments
stateCorr — Corrected system state
vector with length NumStateVariables

Corrected system state, returned as a row vector with length NumStateVariables. The corrected
state is calculated based on the StateEstimationMethod algorithm and the
MeasurementLikelihoodFcn.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the function returns stateCov as [].

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict |
correct

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
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getStateEstimate
Extract best state estimate and covariance from particles

Syntax
stateEst = getStateEstimate(pf)
[stateEst,stateCov] = getStateEstimate(pf)

Description
stateEst = getStateEstimate(pf) returns the best state estimate based on the current set of
particles. The estimate is extracted based on the StateEstimationMethod property from the
stateEstimatorPF object, pf.

[stateEst,stateCov] = getStateEstimate(pf) also returns the covariance around the state
estimate. The covariance is a measure of the uncertainty of the state estimate. Not all state estimate
methods support covariance output. In this case, getStateEstimate returns stateCov as [].

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

 getStateEstimate
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pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

Output Arguments
stateEst — Best state estimate
vector

Best state estimate, returned as a row vector with length NumStateVariables. The estimate is
extracted based on the StateEstimationMethod algorithm specified in pf.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the function returns stateCov as [].

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict |
correct

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
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initialize
Initialize the state of the particle filter

Syntax
initialize(pf,numParticles,mean,covariance)
initialize(pf,numParticles,stateBounds)
initialize( ___ ,Name,Value)

Description
initialize(pf,numParticles,mean,covariance) initializes the particle filter object, pf, with
a specified number of particles, numParticles. The initial states of the particles in the state space
are determined by sampling from the multivariate normal distribution with the specified mean and
covariance.

initialize(pf,numParticles,stateBounds) determines the initial location of the particles by
sample from the multivariate uniform distribution within the specified stateBounds.

initialize( ___ ,Name,Value) initializes the particles with additional options specified by one or
more Name,Value pair arguments.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
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             StateCovariance: 'Use the getStateEstimate function to see the value.'

Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

numParticles — Number of particles used in the filter
scalar

Number of particles used in the filter, specified as a scalar.

mean — Mean of particle distribution
vector

Mean of particle distribution, specified as a vector. The NumStateVariables property of pf is set
based on the length of this vector.

covariance — Covariance of particle distribution
N-by-N matrix

Covariance of particle distribution, specified as an N-by-N matrix, where N is the value of
NumStateVariables property from pf.

stateBounds — Bounds of state variables
n-by-2 matrix

Bounds of state variables, specified as an n-by-2 matrix. The NumStateVariables property of pf is
set based on the value of n. Each row corresponds to the lower and upper limit of the corresponding
state variable.
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Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: "CircularVariables",[0 0 1]

CircularVariables — Circular variables
logical vector

Circular variables, specified as a logical vector. Each state variable that uses circular or angular
coordinates is indicated with a 1. The length of the vector is equal to the NumStateVariables
property of pf.

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict |
correct

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
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predict
Predict state of robot in next time step

Syntax
[statePred,stateCov] = predict(pf)
[statePred,stateCov] = predict(pf,varargin)

Description
[statePred,stateCov] = predict(pf) calculates the predicted system state and its associated
uncertainty covariance. predict uses the StateTransitionFcn property of stateEstimatorPF
object, pf, to evolve the state of all particles. It then extracts the best state estimate and covariance
based on the setting in the StateEstimationMethod property.

[statePred,stateCov] = predict(pf,varargin) passes all additional arguments specified in
varargin to the underlying StateTransitionFcn property of pf. The first input to
StateTransitionFcn is the set of particles from the previous time step, followed by all arguments
in varargin.

Examples

Particle Filter Prediction and Correction

Create a stateEstimatorPF object, and execute a prediction and correction step for state
estimation. The particle filter gives a predicted state estimate based on the return value of
StateTransitionFcn. It then corrects the state based on a given measurement and the return
value of MeasurementLikelihoodFcn.

Create a particle filter with the default three states.

pf = stateEstimatorPF

pf = 
  stateEstimatorPF with properties:

           NumStateVariables: 3
                NumParticles: 1000
          StateTransitionFcn: @nav.algs.gaussianMotion
    MeasurementLikelihoodFcn: @nav.algs.fullStateMeasurement
     IsStateVariableCircular: [0 0 0]
            ResamplingPolicy: [1x1 resamplingPolicyPF]
            ResamplingMethod: 'multinomial'
       StateEstimationMethod: 'mean'
            StateOrientation: 'row'
                   Particles: [1000x3 double]
                     Weights: [1000x1 double]
                       State: 'Use the getStateEstimate function to see the value.'
             StateCovariance: 'Use the getStateEstimate function to see the value.'
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Specify the mean state estimation method and systematic resampling method.

pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Initialize the particle filter at state [4 1 9] with unit covariance (eye(3)). Use 5000 particles.

initialize(pf,5000,[4 1 9],eye(3));

Assuming a measurement [4.2 0.9 9], run one predict and one correct step.

[statePredicted,stateCov] = predict(pf);
[stateCorrected,stateCov] = correct(pf,[4.2 0.9 9]);

Get the best state estimate based on the StateEstimationMethod algorithm.

stateEst = getStateEstimate(pf)

stateEst = 1×3

    4.1562    0.9185    9.0202

Input Arguments
pf — stateEstimatorPF object
handle

stateEstimatorPF object, specified as a handle. See stateEstimatorPF for more information.

varargin — Variable-length input argument list
comma-separated list

Variable-length input argument list, specified as a comma-separated list. This input is passed directly
into the StateTransitionFcn property of pf to evolve the system state for each particle. When you
call:

predict(pf,arg1,arg2)

MATLAB essentially calls the stateTranstionFcn as:

stateTransitionFcn(pf,prevParticles,arg1,arg2)

Output Arguments
statePred — Predicted system state
vector

Predicted system state, returned as a vector with length NumStateVariables. The predicted state is
calculated based on the StateEstimationMethod algorithm.

stateCov — Corrected system covariance
N-by-N matrix | []

Corrected system variance, returned as an N-by-N matrix, where N is the value of
NumStateVariables property from pf. The corrected state is calculated based on the
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StateEstimationMethod algorithm and the MeasurementLikelihoodFcn. If you specify a state
estimate method that does not support covariance, then the function returns stateCov as [].

Version History
Introduced in R2016a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
stateEstimatorPF | resamplingPolicyPF | initialize | getStateEstimate | predict |
correct

Topics
“Track a Car-Like Robot Using Particle Filter”
“Particle Filter Parameters”
“Particle Filter Workflow”
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getGraph
Graph object representing tree structure

Syntax
g = getGraph(frames)
g = getGraph(frames,timestamp)

Description
g = getGraph(frames) returns a MATLAB graph object showing the child-parent relationships
between frames at the last timestamp in the frames transformTree object.

g = getGraph(frames,timestamp) returns a MATLAB graph object showing the child-parent
relationships between frames at the specified timestamp.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

timestamp — Time for querying the frames
scalar in seconds

Time for querying the frames, specified as a scalar in seconds.

Output Arguments
g — MATLAB graph
graph object

MATLAB graph, specified as a graph object. This graph reflects the parent-child relationship of the
transforms defined in the transform tree object, frames.

Version History
Introduced in R2022a

See Also
Objects
transformTree
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Functions
getTransform | info | removeTransform | show | updateTransform
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getTransform
Get relative transform between frames

Syntax
tform = getTransform(frames,targetframe,sourceframe)
tform = getTransform(frames,targetframe,sourceframe,timestamp)

Description
tform = getTransform(frames,targetframe,sourceframe) returns the relative transforms
that convert points in the sourceFrame coordinate frame to the targetFrame. By default, this
function uses the last timestamp for both frames specified in frames.

tform = getTransform(frames,targetframe,sourceframe,timestamp) returns the relative
transforms at the given timestamp. If the given time is not specified in the transform tree, frames,
the function performs interpolation using a constant velocity assumption for linear motion, and
spherical linear interpolation (SLERP) for angular motion.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

sourceframe — Source frame names
string scalar | character vector | string array | cell array character vector

Source frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. The source frame is the frame you have coordinates in, and the target frame is the
frame you want to convert those coordinates to. Each element of the array corresponds to the same
element in targetframe and the length matches the n-dimension of tform.
Data Types: char | string | cell

targetframe — Target frame names
string scalar | character vector | string array | cell array character vector

Target frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. The source frame is the frame you have coordinates in, and the target frame is the
frame you want to convert those coordinates to. Each element of the array corresponds to the same
element in sourceframe and the length matches the n-dimension of tform.
Data Types: char | string | cell

timestamp — Time for querying the frames
scalar in seconds | vector
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Time for querying the frames, specified as a scalar or vector of scalars in seconds. For timestamps
specified before the first timestamp in frames, the function returns NaN values. For timestamps
specified after the last timestamp, the most recent (largest timestamp) transformation is returned.

Output Arguments
tform — Transformations that converts points from source frames to target frames
4-by-4 homogenous transformation matrix | 4-by-4-by-n matrix array

Transformations that converts points from the source frames to the target frames specified as a 4-
by-4 transformation matrix or a 4-by-4-by-n matrix array. Each matrix in the array corresponds to the
same element of targetframe, sourceframe, and timestamp.

Version History
Introduced in R2022a

See Also
Objects
transformTree

Functions
getGraph | info | removeTransform | show | updateTransform
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info
List all frame names and stored timestamps

Syntax
list = info(frames)

Description
list = info(frames) returns a structure array with an element for each frame containing the
frame name, parent frame, and all stored timestamps.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

Output Arguments
list — List of frame names, parents, and timestamps
structure array

List of frame names, parents, and timestamps, specified as a structure array. The elements of the
structure array are:

• FrameNames –– String scalars listing each frame name.
• ParentNames –– String scalars listing the parent of each frame. The base frame returns an empty

string.
• Timestamps –– Vectors of timestamps for each frame. Each vector is padded with NaNs based on

the MaxNumTransforms property of frames.

Version History
Introduced in R2022a

See Also
Objects
transformTree

Functions
getGraph | getTransform | removeTransform | show | updateTransform
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removeTransform
Remove frame transform relative to its parent

Syntax
removeTransform(frames,framename,timestamp)
removeTransform(frames,framename,timeStart,timeEnd)

Description
removeTransform(frames,framename,timestamp) removes the frame transforms between the
given frame name and their parent frame at the specified timestamps.

removeTransform(frames,framename,timeStart,timeEnd) removes all the frame transforms
for the given frame name in the time interval, [timeStart timeEnd].

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

framename — Frame name
string scalar | character vector

Frame name with transforms you want to remove, specified as a string scalar or character vector.
Data Types: char | string | cell

timestamp — Times for removing transforms
scalar in seconds | vector

Times for removing transforms, specified as a scalar or vector of scalars in seconds. These
timestamps must be specified for each of the frame transforms that you want to remove.

timeStart — Initial time for removing transforms
scalar in seconds

Initial time for removing transforms, specified as a scalar in seconds. All transforms for the given
framename are removed from timeStart to timeEnd.

timeEnd — Final time for removing transforms
scalar in seconds

Final time for removing transforms, specified as a scalar in seconds. All transforms for the given
framename are removed from timeStart to timeEnd.
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Version History
Introduced in R2022a

See Also
Objects
transformTree

Functions
getGraph | getTransform | info | show | updateTransform
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show
Show transform tree

Syntax
hAx = show(frames)
hAx = show(frames,timestamp)
hAx = show( ___ ,Name,Value)

Description
hAx = show(frames) displays the transform tree at the last timestamp in the sequence.

hAx = show(frames,timestamp) displays the transform tree at the specified timestamp. If the
specified time is not specified in the transform tree, frames, the function performs interpolation
using a constant velocity assumption for linear motion, and spherical linear interpolation (SLERP) for
angular motion.

hAx = show( ___ ,Name,Value) specifies additional options specified by one or more name-value
pair arguments.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

timestamp — Time for querying the frames
scalar in seconds | vector

Time for querying the frames, specified as a scalar or vector of scalars in seconds. If the given time is
not specified in the transform tree, frames, the function performs interpolation using a constant
velocity assumption for linear motion, and spherical linear interpolation (SLERP) for angular motion.
For timestamps specified after the last timestamp, the most recent (largest timestamp)
transformation is returned.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'ShowArrow',true draws arrows between parent to child frames

ShowArrow — Draw arrows from parent to child frames
false (default) | true
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Draw arrows from parent to child frames, specified as true or false.
Data Types: logical

FrameSizes — Axis sizes for frames
struct("root",1) (default) | structure

Axis sizes for frames, specified as a structure. Specify each frame name as a the field with a scalar for
that frame's relative size.
Example: struct("root",2,"frameA",5)
Data Types: struct

FrameNames — Frames to plot
all frames (default) | string scalar | character vector | string array | cell array of character vectors

Frames to plot, specified as a string, character vector, string array, or cell array of character vectors.
Use this argument to specify a subset of frame names to display in the figure.
Example: ["Frame1","Frame3","Frame9"]
Data Types: char | string | cell

Parent — Axes on which to plot
Axes object

Axes on which to plot, specified as an Axes object.

Output Arguments
hAx — Axes
Axes object

Axes under which the transform tree is shown, returned as an Axes object. For more information, see
Axes Properties.

Version History
Introduced in R2022a

See Also
Objects
transformTree

Functions
getGraph | getTransform | info | removeTransform | updateTransform
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updateTransform
Update frame transform relative to its parent

Syntax
updateTransform(frames,parentframe,childframe,position,orientation,timestamp)
updateTransform(frames,parentframe,childframe,tform,timestamp)

Description
updateTransform(frames,parentframe,childframe,position,orientation,timestamp)
updates the relative transforms between child frames and their parents with a given position and
orientation at the specified time stamps. The position and orientation are given in the parent
reference frame.

updateTransform(frames,parentframe,childframe,tform,timestamp) updates the relative
transforms between child frames and their parents with a given 4-by-4 homogenous transform,
tform.

Input Arguments
frames — Transform tree defining the child-parent frame relationship at given timestamps
transformTree object

Transform tree defining the child-parent frame relationship at given timestamps, specified as a
transformTree object.

parentframe — Parent frame names
string scalar | character vector | string array | cell array character vector

Parent frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. Transformations specified in tform or position and orientation are relative
to the parent frame. Each element of parentframe corresponds to the same element in
childframe.
Data Types: char | string | cell

childframe — Child frame names
string scalar | character vector | string array | cell array character vector

Child frame names specified as a string scalar, character vector, string array, or cell array of
character vectors. The function attaches the child frame to the parent frame. Transformations
specified in tform or position and orientation are relative to the parent frame. Each element of
parentframe corresponds to the same element in childframe.
Data Types: char | string | cell

position — Relative position of child frame to parent
three-element [x y z] vector
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Relative position of child frame to parent, specified as a three-element [x y z] vector. Specify the
relative orientation in orientation.

orientation — Relative orientation of child frame to parent
three-element [x y z] vector

Relative orientation of child frame to parent, specified as a three-element [x y z] vector. Specify
the relative position in position.

tform — Relative transform of child frame to parent
4-by-4 homogenous transformation matrix

Relative transform of child frame to parent, specified as a 4-by-4 homogenous transformation matrix.

timestamp — Time for querying the frames
scalar in seconds | vector

Time for querying the frames, specified as a scalar or vector of scalars in seconds. If the specified
time is not specified in the transform tree, frames, the function performs interpolation using a
constant velocity assumption for linear motion, and spherical linear interpolation (SLERP) for angular
motion. For timestamps specified after the last timestamp, the most recent (largest timestamp)
transformation is returned.

Version History
Introduced in R2022a

See Also
Objects
transformTree

Functions
getGraph | getTransform | info | removeTransform | show
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sample
Sample end-effector poses in world frame

Syntax
eePose = sample(goalRegion)
eePose = sample(goalRegion,numSamples)

Description
eePose = sample(goalRegion) samples an end-effector pose in the world frame as a
homogeneous transformation matrix.

The function returns a pose uniformly sampled within the Bounds property relative to the reference
frame and applies the following transformations based on the ReferencePose and
EndEffectorOffsetPose properties:

tSample; % Pose sampled within Bounds
Tw0 = goalRegion.ReferencePose;
TeW = goalRegion.EndEffectorOffsetPose;
eePose = Tw0 * tSample * TeW; % tSample is a pose within the bounds.

eePose = sample(goalRegion,numSamples) samples multiple poses based on the input
numSamples. The function returns the end-effector poses as a 3-D array of homogeneous transforms.

Examples

Sample Multiple Poses In A Workspace Goal Region

Sample various poses within the bounds of a workspace goal region for a manipulator arm. Some end-
effector poses may not be desirable due to the positioning of the arm bodies and obstacles in the
scene. The workspaceGoalRegion object defines the bounds on the XYZ-position and ZYX Euler
orientation of the robot end effector. The sample object function uniformly samples random poses
within the bounds. Find configurations that achieve these end-effector poses and determine the best
by visualization.

Load an existing robot model as a rigidBodyTree object.

robot = loadrobot("kinovaGen3","DataFormat","row");
show(robot,"Collisions","on","Visuals","off");

Add a can as a collisionCylinder object to the robot arm.

can = collisionCylinder(0.05, 0.1); 
can.Pose = trvec2tform([0.2, 0.3, 0.5]); 

addCollision(robot.Bodies{end},"cylinder", [0.05, 0.1], trvec2tform([0, 0, 0.02])); 

The goal of this example is to place this can on a table with other cans. Add the table and other cans
to the environment by creating a cell array of collision objects. Show the entire env cell array.
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table = collisionBox(0.7, 0.5, 0.04); 
table.Pose = trvec2tform([0, 0.5, 0.43]); 
env = {can, copy(can), copy(can), table}; 
env{2}.Pose = trvec2tform([-0.1, 0.3, 0.5]); 
env{3}.Pose = trvec2tform([-0.1, 0.5, 0.5]); 

hold on 
for i = 1: length(env) 
    show(env{i}) 
end
show(robot,homeConfiguration(robot),"Collisions","on","Visuals","off"); 

Define Goal Region

Create a workspace goal region using the end-effector body name of the robot.

Define the goal region parameters for your workspace. The goal region includes a reference pose,
XYZ-position bounds, and orientation limits on the ZYX Euler angles. This example specifiies XYZ
bounds within the table dimensions and fixes rotation to a small range in the Y and X axis.

tableRegion = workspaceGoalRegion("EndEffector_Link",...
    "ReferencePose",table.Pose);
tableRegion.EndEffectorOffsetPose(1:3,1:3) = eul2rotm([0, 0, pi]); 
tableRegion.EndEffectorOffsetPose(3, end) = 0.1; 

tableRegion.Bounds = ... 
    [-table.X/2, table.X/2; % X Bounds
    -table.Y/2, table.Y/2;  % Y Bounds
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    0.04, 0.10;             % Z Bounds
    -pi, pi;                % Rotation about Z-axis
    -0.01, 0.01;            % Y-Axis
    -0.01, 0.01;];          % X-Axis

show(tableRegion);
view(165,50)
camzoom(3.5)

Sample Poses

Uniformly sample poses within the table region using the sample object function. In this example, set
the rng seed to get repeatible results. Create vectors for storing valid and invalid poses.

rng(0)
poses = sample(tableRegion,10);
validPoses = [];
invalidPoses = [];

Check for Collisions

To find configurations for those poses, create an inverse kinematics (IK) solver.

ik = inverseKinematics('RigidBodyTree',robot);
config = cell(10);
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Test the sampled poses by iterating through the sampled poses, solving for configurations using IK,
and checking for collisions. Show the valid configurations.

for i = 1:length(poses)
    % Solve for robot configuraiton using IK.
    config{i} = ik("EndEffector_Link",poses(:,:,i),ones(6,1),homeConfiguration(robot));
    % Check for collisions.
    isColliding = checkCollision(robot,config{i},env,SkippedSelfCollisions="parent");
    
    if ~isColliding % If not in collision, show robot configuration and save valid pose.
        show(robot,config{i},"PreservePlot",false,"Collisions","on","Visuals","off");
        drawnow
        validPoses = [validPoses; i];
    else
        invalidPoses = [invalidPoses; i];
    end
    
end

disp(string(validPoses'))

    "3"    "5"    "7"    "10"

Visualize A Singe Valid Pose

Plot all valid poses as transforms. The final valid configuration from checking collisions is still visible
in the figure.

3 Methods

3-536



translations = tform2trvec(poses(:,:,validPoses));
rotations = tform2quat(poses(:,:,validPoses));

plotTransforms(translations,rotations,"FrameSize",0.1)

Show a valid configuration from the list. Change the index in validPoses to look at different poses.
Call hold off to stop preserving figure elements. To manually inspect poses and configurations,
comment out the final line when running.

poseIndex = validPoses(1);
show(robot,config{poseIndex},"PreservePlot",false,"Collisions","on","Visuals","off");
hold off
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Input Arguments
goalRegion — Workspace goal region
workspaceGoalRegion object

Workspace goal region, specified as a workspaceGoalRegion object.

numSamples — Number of samples
positive integer

Number of samples, specified as a positive integer

Output Arguments
eePose — Poses sampled within workspace bounds
4-by-4 homogeneous transform matrix | four-by-four-by-n array

Poses sampled within the workspace bounds in the world frame, returned as a four-by-four
homogeneous transformation matrix or 4-by-4-by-n array, where n is the number of samples
numSamples.

The function returns a pose uniformly sampled within the Bounds property relative to the reference
frame and applies the following transformations based on the ReferencePose and
EndEffectorOffsetPose properties:
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tSample = rand(6,2);
Tw0 = goalRegion.ReferencePose;
TeW = goalRegion.EndEffectorOffsetPose;
eePose = Tw0 * tSample * TeW;

Data Types: double

Version History
Introduced in R2021a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
workspaceGoalRegion | manipulatorRRT | show
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show
Visualize workspace bounds, reference frame, and offset frame

Syntax
show(goalRegion)
show(goalRegion,"Parent",axesHandle)
ax = show( ___ )

Description
show(goalRegion) plots the position and orientation bounds of the workspace goal region. The
function also displays the reference frame and end-effector offset frame.

show(goalRegion,"Parent",axesHandle) specifies the parent axes on which to plot the
workspace goal region.

ax = show( ___ ) returns the axes handle that contains the workspace goal region plot using the
input arguments from previous syntaxes.

Examples

Plan Path To A Workspace Goal Region

Specify a goal region in your workspace and plan a path within those bounds. The
workspaceGoalRegion object defines the bounds on the XYZ-position and ZYX Euler orientation of
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the robot end effector. The manipulatorRRT object plans a path based on that goal region and
samples random poses within the bounds.

Load an existing robot model as a rigidBodyTree object.

robot = loadrobot("kinovaGen3", "DataFormat", "row");
ax = show(robot);

Create Path Planner

Create a rapidly-exploring random tree (RRT) path planner for the robot. This example uses an empty
environment, but this workflow also works well with cluttered environments. You can add collision
objects to the environment like the collisionBox or collisionMesh object.

planner = manipulatorRRT(robot,{});
planner.SkippedSelfCollisions="parent";

Define Goal Region

Create a workspace goal region using the end-effector body name of the robot.

Define the goal region parameters for your workspace. The goal region includes a reference pose,
XYZ-position bounds, and orientation limits on the ZYX Euler angles. This example specifies bounds
on the XY-plane in meters and allows rotation about the Z-axis in radians.

goalRegion = workspaceGoalRegion(robot.BodyNames{end}); 
goalRegion.ReferencePose = trvec2tform([0.5 0.5 0.2]);

 show

3-541



goalRegion.Bounds(1, :) = [-0.2 0.2];    % X Bounds
goalRegion.Bounds(2, :) = [-0.2 0.2];    % Y Bounds
goalRegion.Bounds(4, :) = [-pi/2 pi/2];  % Rotation about the Z-axis

You can also apply a fixed offset to all poses sampled within the region. This offset can account for
grasping tools or variations in dimensions within your workspace. For this example, apply a fixed
transformation that places the end effector 5 cm above the workspace.

goalRegion.EndEffectorOffsetPose = trvec2tform([0 0 0.05]);
hold on
show(goalRegion);

Plan Path To Goal Region

Plan a path to the goal region from the robot's home configuration. Due to the randomness in the RRT
algorithm, this example sets the rng seed to ensure repeatable results.

rng(0)
path = plan(planner,homeConfiguration(robot),goalRegion);

Show the robot executing the path. To visualize a more realistic path, interpolate points between path
configurations.

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot,interpConfigurations(i,:),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1],...

3 Methods

3-542



        'CameraViewAngle',5)
  
    drawnow
end
hold off

Adjust End-effector Pose

Notice that the robot arm approaches the workspace from the bottom. To flip the orientation of the
final position, add a pi rotation to the Y-axis for the reference pose.

goalRegion.EndEffectorOffsetPose = ... 
    goalRegion.EndEffectorOffsetPose*eul2tform([0 pi 0],"ZYX");

Replan the path and visualize the robot motion again. The robot now approaches from the top.

hold on
show(goalRegion);
path = plan(planner,homeConfiguration(robot),goalRegion);

interpConfigurations = interpolate(planner,path,5);

for i = 1 : size(interpConfigurations)
    show(robot, interpConfigurations(i, :),"PreservePlot",false);
    set(ax,'ZLim',[-0.05 0.75],'YLim',[-0.05 1],'XLim',[-0.05 1])
    drawnow;
end
hold off
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Input Arguments
goalRegion — Workspace goal region
workspaceGoalRegion object

Workspace goal region, specified as a workspaceGoalRegion object.

Output Arguments
ax — Axes that contains the workspace goal region
Axes object

Axes that contains the workspace goal region, returned as an axes object.

Version History
Introduced in R2021a

See Also
workspaceGoalRegion | manipulatorRRT | sample
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lookupPose
Obtain pose information for certain time

Syntax
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes)

Description
[position,orientation,velocity,acceleration,angularVelocity] = lookupPose(
traj,sampleTimes) returns the pose information of the waypoint trajectory at the specified sample
times. If any sample time is beyond the duration of the trajectory, the corresponding pose information
is returned as NaN.

Input Arguments
traj — Waypoint trajectory
waypointTrajectory object

Waypoint trajectory, specified as a waypointTrajectory object.

sampleTimes — Sample times
M-element vector of nonnegative scalar

Sample times in seconds, specified as an M-element vector of nonnegative scalars.

Output Arguments
position — Position in local navigation coordinate system (m)
M-by-3 matrix

Position in the local navigation coordinate system in meters, returned as an M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

orientation — Orientation in local navigation coordinate system
M-element quaternion column vector | 3-by-3-by-M real array

Orientation in the local navigation coordinate system, returned as an M-by-1 quaternion column
vector or a 3-by-3-by-M real array.

Each quaternion or 3-by-3 rotation matrix is a frame rotation from the local navigation coordinate
system to the current body coordinate system.

M is specified by the sampleTimes input.
Data Types: double
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velocity — Velocity in local navigation coordinate system (m/s)
M-by-3 matrix

Velocity in the local navigation coordinate system in meters per second, returned as an M-by-3
matrix.

M is specified by the sampleTimes input.
Data Types: double

acceleration — Acceleration in local navigation coordinate system (m/s2)
M-by-3 matrix

Acceleration in the local navigation coordinate system in meters per second squared, returned as an
M-by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

angularVelocity — Angular velocity in local navigation coordinate system (rad/s)
M-by-3 matrix

Angular velocity in the local navigation coordinate system in radians per second, returned as an M-
by-3 matrix.

M is specified by the sampleTimes input.
Data Types: double

Version History
Introduced in R2022a

See Also
Objects
waypointTrajectory

Functions
waypointInfo | perturbations | perturb
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waypointInfo
Get waypoint information table

Syntax
trajectoryInfo = waypointInfo(trajectory)

Description
trajectoryInfo = waypointInfo(trajectory) returns a table of waypoints, times of arrival,
velocities, and orientation for the trajectory System object.

Input Arguments
trajectory — Object of waypointTrajectory
object

Object of the waypointTrajectory System object.

Output Arguments
trajectoryInfo — Trajectory information
table

Trajectory information, returned as a table with variables corresponding to set creation properties:
Waypoints, TimeOfArrival, Velocities, and Orientation.

The trajectory information table always has variables Waypoints and TimeOfArrival. If the
Velocities property is set during construction, the trajectory information table additionally returns
velocities. If the Orientation property is set during construction, the trajectory information table
additionally returns orientation.

Version History
Introduced in R2022a

See Also
Objects
waypointTrajectory

Functions
lookupPose | perturbations | perturb

 waypointInfo

3-547





Blocks

4



Ackermann Kinematic Model
Car-like vehicle motion using Ackermann kinematic model
Library: Robotics System Toolbox / Mobile Robot Algorithms

Description
The Ackermann Kinematic Model block creates a car-like vehicle model that uses Ackermann
steering. This model represents a vehicle with two axles separated by the distance, Wheel base. The
state of the vehicle is defined as a four-element vector, [x y θ ψ], with an global xy-position, vehicle
heading, θ, and steering angle, ψ. The vehicle heading and xy-position are defined at the center of the
rear axle. Angles are specified in radians and the global positions are specified in meters. The
steering input for the vehicle is given as dψ/dt, in radians per second.

Ports
Input

v — Vehicle speed
numeric scalar

Vehicle speed, specified in meters per second.

dψ/dt — Steering angular velocity
numeric scalar

Steering angular velocity of the vehicle, specified in radians per second.

Output

state — State of vehicle
four-element vector

Current xy-position, orientation, and steering angle, specified as [x y θ ψ], in meters and radians.
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stateDot — Derivatives of state output
four-element vector

The linear and angular velocities of the vehicle, specified as a [xDot yDot thetaDot psiDot] vector in
meters per second and radians per second. The linear and angular velocities are calculated by taking
the time derivatives of the state output.

Parameters
Wheel base — Distance between front and rear axles
1 (default) | positive numeric scalar

The wheel base refers to the distance between the front and rear vehicle axles, specified in meters.

Vehicle speed range — Minimum and maximum vehicle speeds
[-Inf Inf] (default) | two-element vector

The wheel speed range is a two-element vector that provides the minimum and maximum vehicle
wheel speeds, [MinSpeed MaxSpeed], specified in radians per second.

Maximum steering angle — Distance between front and rear axles
pi/4 (default) | positive numeric scalar

The maximum steering angle, refers to the maximum amount the vehicle can be steered to the right
or left, specified in radians. The default value is pi/4.

Initial state — Initial state of vehicle
[0;0;0;0] (default) | four-element vector

The initial x-, y-position, heading angle, theta, and steering angle, psi, of the vehicle.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

Tunable: No

Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control. 1st ed.

Cambridge, MA: Cambridge University Press, 2017.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Bicycle Kinematic Model | Differential Drive Kinematic Model | Unicycle Kinematic Model

Classes
ackermannKinematics

Topics
“Mobile Robot Kinematics Equations”
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Bicycle Kinematic Model
Compute car-like vehicle motion using bicycle kinematic model
Library: Robotics System Toolbox / Mobile Robot Algorithms

Description
The Bicycle Kinematic Model block creates a bicycle vehicle model to simulate simplified car-like
vehicle dynamics. This model represents a vehicle with two axles defined by the length between the
axles, Wheel base. The front wheel can be turned with steering angle psi. The vehicle heading
theta is defined at the center of the rear axle.

Ports
Input

v — Vehicle speed
numeric scalar

Vehicle speed, specified in meters per second.

psi — Steering angle
numeric scalar

Steering angle of the vehicle, specified in radians.

Dependencies

To enable this port, set the Vehicle inputs parameter to Vehicle Speed & Steering Angle.

omega — Steering angular velocity
numeric scalar

Angular velocity of the vehicle, specified in radians per second. A positive value steers the vehicle left
and negative values steer the vehicle right.
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Dependencies

To enable this port, set the Vehicle inputs parameter to Vehicle Speed & Heading Angular
Velocity.

Output

state — Pose of vehicle
three-element vector

Current xy-position and orientation of the vehicle, specified as a [x y theta] vector in meters and
radians.

stateDot — Derivatives of state output
three-element vector

The linear and angular velocities of the vehicle, specified as a [xDot yDot thetaDot] vector in meters
per second and radians per second. The linear and angular velocities are calculated by taking the
derivative of the state output.

Parameters
Vehicle inputs — Type of speed and directional inputs for vehicle
Vehicle Speed & Steering Angle (default) | Vehicle Speed & Heading Angular
Velocity

placeholder.

• Vehicle Speed & Steering Angle — Vehicle speed in meters per second with a steering
angle in radians.

• Vehicle Speed & Heading Angular Velocity — Vehicle speed in meters per second with a
heading angular velocity in radians per second.

Wheel base — Distance between front and rear axles
1 (default) | positive numeric scalar

The wheel base refers to the distance between the front and rear vehicle axles, specified in meters.

Vehicle speed range — Minimum and maximum vehicle speeds
[-Inf Inf] (default) | two-element vector

The wheel speed range is a two-element vector that provides the minimum and maximum vehicle
wheel speeds, [MinSpeed MaxSpeed], specified in radians per second.

Maximum steering angle — Max turning radius
pi/4 (default) | numeric scaler

The maximum steering angle, refers to the maximum amount the vehicle can be steered to the right
or left, specified in radians. The default value, pi/4 provides the vehicle with minimum turning
radius, 0. This property is used to validate the user-provided state input.

Initial state — Initial pose of vehicle
[0;0;0] (default) | three-element vector

The initial x-, y-position and orientation, theta, of the vehicle.
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Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

Tunable: No

Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

[2] Corke, Peter I. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, 2011.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Ackermann Kinematic Model | Differential Drive Kinematic Model | Unicycle Kinematic Model

Classes
bicycleKinematics

Topics
“Simulate Different Kinematic Models for Mobile Robots”
“Mobile Robot Kinematics Equations”
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Coordinate Transformation Conversion
Convert to a specified coordinate transformation representation
Library: Robotics System Toolbox / Utilities

Navigation Toolbox / Utilities
ROS Toolbox / Utilities
UAV Toolbox / Utilities

Description
The Coordinate Transformation Conversion block converts a coordinate transformation from the input
representation to a specified output representation. The input and output representations use the
following forms:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

Ports
Input

Input transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Input transformation, specified as a coordinate transformation. The following representations are
supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
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• Translation Vector (TrVec) – [x y z]

All vectors must be column vectors.

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
3-element column vector

Translation vector, specified as a 3-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.

Output Arguments

Output transformation — Coordinate transformation
column vector | 3-by-3 matrix | 4-by-4 matrix

Output transformation, returned as a coordinate transformation with the specified representation.
The following representations are supported:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

To accommodate representations that only contain position or orientation information (TrVec or Eul,
for example), you can specify two inputs or outputs to handle all transformation information. When
you select the Homogeneous Transformation as an input or output, an optional Show TrVec input/
output port parameter can be selected on the block mask to toggle the multiple ports.

TrVec — Translation vector
three-element column vector

Translation vector, returned as a three-element column vector, [x y z], which corresponds to a
translation in the x, y, and z axes respectively. This port can be used to input or output the translation
information separately from the rotation vector.
Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port. Enable the port by clicking Show TrVec input/
output port.
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Parameters
Representation — Input or output representation
Axis-Angle | Euler Angles | Homogeneous Transformation | Rotation Matrix |
Translation Vector | Quaternion

Select the representation for both the input and output port for the block. If you are using a
transformation with only orientation information, you can also select the Show TrVec input/
output port when converting to or from a homogeneous transformation.

Axis rotation sequence — Order of Euler angle axis rotations
ZYX (default) | ZYZ | XYZ

Order of the Euler angle axis rotations, specified as ZYX, ZYZ, or XYZ. The order of the angles in the
input or output port Eul must match this rotation sequence. The default order ZYX specifies an
orientation by:

• Rotating about the initial z-axis
• Rotating about the intermediate y-axis
• Rotating about the second intermediate x-axis

Dependencies

You must select Euler Angles for the Representation input or output parameter. The axis
rotation sequence only applies to Euler angle rotations.

Show TrVec input/output port — Toggle TrVec port
off (default) | on

Toggle the TrVec input or output port when you want to specify or receive a separate translation
vector for position information along with an orientation representation.

Dependencies

You must select Homogeneous Transformation (TForm) for the opposite transformation port to get
the option to show the additional TrVec port.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2017b
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
axang2quat | eul2tform | trvec2tform

Topics
“Coordinate Transformations in Robotics”
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Differential Drive Kinematic Model
Compute vehicle motion using differential drive kinematic model
Library: Robotics System Toolbox / Mobile Robot Algorithms

Description
The Differential Drive Kinematic Model block creates a differential-drive vehicle model to simulate
simplified vehicle dynamics. This model approximates a vehicle with a single fixed axle and wheels
separated by a specified track width Track width. Each of the wheels can be driven independently
using speed inputs, dϕL/dt and dϕR/dt, for the left and right wheels respectively. Vehicle speed and
heading is defined from the axle center.

Ports
Input

dϕL/dt — Left wheel speed
numeric scalar

Left wheel speed of the vehicle, specified in radians per second.

Dependencies

To enable this port, set the Vehicle inputs parameter to Wheel Speeds.

dϕR/dt — Right wheel speed
numeric scalar

Right wheel speed of the vehicle, specified in radians per second.

Dependencies

To enable this port, set the Vehicle inputs parameter to Wheel Speeds.
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v — Vehicle speed
numeric scalar

Vehicle speed, specified in meters per second.
Dependencies

To enable this port, set the Vehicle inputs parameter to Vehicle Speed & Heading Angular
Velocity.

ɷ — Angular velocity of vehicle
numeric scalar

Angular velocity of the vehicle, specified in radians per second. A positive value steers the vehicle left
and negative values steer the vehicle right.
Dependencies

To enable this port, set the Vehicle inputs parameter to Vehicle Speed & Heading Angular
Velocity.

Output

state — Pose of vehicle
three-element vector

Current position and orientation of the vehicle, specified as a [x y theta] vector in meters and radians.

stateDot — Derivatives of state output
three-element vector

The current linear and angular velocities of the vehicle specified as a [xDot yDot thetaDot] vector in
meters per second and radians per second. The linear and angular velocities are calculated by taking
the derivative of the state output.

Parameters
Vehicle inputs — Type of speed and directional inputs for vehicle
Wheel Speeds (default) | Vehicle Speed & Heading Angular Velocity

The format of the model input commands

• Wheel Speeds — Angular speeds of the two wheels in radians per second.
• Vehicle Speed & Heading Angular Velocity — Vehicle speed in meters per second with a

heading angular velocity in radians per second.

Wheel radius — Wheel radius of vehicle
0.05 (default) | positive numeric scalar

The radius of the wheels on the vehicle, specified in meters.

Wheel speed range — Minimum and maximum vehicle speeds
[-Inf Inf] (default) | two-element vector

The wheel speed range is a two-element vector that provides the minimum and maximum vehicle
wheel speeds, [MinSpeed MaxSpeed], specified in radians per second.
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Track width — Track length of vehicle from wheel to wheel
0.2 (default) | numeric scalar

Length of the track from the left wheel to right wheel, specified in meters.

Initial state — Initial pose of the vehicle
[0;0;0] (default) | three-element vector

The initial xy-position and orientation, θ, of the vehicle.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

Tunable: No

Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Ackermann Kinematic Model | Bicycle Kinematic Model | Unicycle Kinematic Model

Classes
differentialDriveKinematics

Topics
“Control Differential Drive Robot in Gazebo with Simulink”
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Forward Dynamics
Joint accelerations given joint torques and states
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Forward Dynamics block computes joint accelerations for a robot model given a robot state that
is made up of joint torques, joint states, and external forces. To get the joint accelerations, specify the
robot configuration (joint positions), joint velocities, applied torques, and external forces.

Specify the robot model in the Rigid body tree parameter as a rigidBodyTree object, and set the
Gravity property on the object. You can also import a robot model from an URDF (Unified Robot
Description Format) file using importrobot.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

JointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the degrees of freedom
(number of nonfixed joints) of the robot.

JointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a specific joint.
The number of joint torques is equal to the degrees of freedom (number of nonfixed joints) of the
robot.

FExt — External force matrix
6-by-n matrix

External force matrix, specified as a 6-by-n matrix, where n is the number of bodies in the robot
model. The matrix contains nonzero values in the rows corresponding to specific bodies. Each row is
a vector of applied forces and torques that act as a wrench for that specific body. Generate this matrix
using externalForce with a MATLAB Function block.
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Output

JointAccel — Joint accelerations
vector

Joint accelerations, returned as a vector. The number of joint accelerations is equal to the degrees of
freedom of the robot.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Format) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix | Velocity Product Torque
| Get Transform

Classes
rigidBodyTree
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Functions
forwardDynamics | importrobot | externalForce | homeConfiguration |
randomConfiguration

Topics
“Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 Forward Dynamics
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Gazebo Apply Command
Send command to Gazebo simulator
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Apply Command block sends commands to a Gazebo simulation. The block accepts a command
message, input as a bus signal, and sends the command to the Gazebo server.

To send command messages, connect to a Gazebo simulation. Open the block mask and click
Configure Gazebo network and simulation settings. For more information see “Configure Gazebo
Simulation” on page 4-19.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands. To see a basic example, check “Perform Co-Simulation between Simulink and
Gazebo”.

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Input

Cmd — Gazebo Command
bus

Gazebo command message, specified as a bus. The command is an instruction for a specified model
link or joint. Specify the model name as part of the bus signal using the Gazebo Select Entity block.

There are seven different command types with specific fields:

• ApplyLinkWrench:

• model_name –– Variable-size uint8 array representing the name of the model in the Gazebo
simulator. You can specify this field using the Gazebo Select Entity block.

• link_name –– Variable-size uint8 array representing the name of the link in the model in the
Gazebo simulator. You can specify this field using the Gazebo Select Entity block.

• force_type –– Variable-size uint8 array specified as 'SET' or 'ADD'. 'SET' overwrites any
existing force command for the specified duration. 'ADD' adds the value with existing
commands.

• Fx, fy, fz –– double values specifying the amount of force applied to the Gazebo model
link in world coordinates and Newtons.
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• torque_type –– Variable-size uint8 array specified as 'SET' or 'ADD'. 'SET' overwrites
any existing torque command for the specified duration. 'ADD' adds the value with existing
commands.

• Tx, ty, tz –– double values specifying the amount of torque applied to the Gazebo model
link in world coordinates and Newton-meters.

• duration –– Bus containing seconds and nanoseconds as double integers, which specify how
long to apply the torque in simulation time.

• ApplyJointTorque:

• model_name –– Variable-size uint8 array representing the name of the model in the Gazebo
simulator. You can specify this field using the Gazebo Select Entity block.

• joint_name –– Variable-size uint8 array representing the name of the joint in the model in
the Gazebo simulator. You can specify this field using the Gazebo Select Entity block.

• index –– uint32 integer that identifies which joint axis the torque should be applied to.
• effort –– double scalar value specifying the amount of torque or force to apply to the joint.
• duration –– Bus containing seconds and nanoseconds as double integers, which specify how

long to apply the torque in simulation time.

• SetLinkWorldPose — Set world pose in Gazebo world for selected link of Gazebo model
• SetLinkLinearVelocity — Set linear velocity of selected link of Gazebo model
• SetLinkAngularVelocity — Set angular velocity of selected link of Gazebo model
• SetJointPosition — Set position (angle) of selected joint of Gazebo model
• SetJointVelocity — Set velocity of selected joint of Gazebo model

Data Types: bus

Parameters
Command type — Type of command
ApplyLinkWrench (default) | ApplyJointTorque | SetLinkWorldPose |
SetLinkLinearVelocity | SetLinkAngularVelocity | SetJointPosition |
SetJointVelocity

Click Select to get a list of command types available in Gazebo. The input Cmd must contain the
correct command message structure that matches this type.

Sample time — Sampling time of input
0.001 (default) | positive

Sample time indicates the interval which commands are sent to the Gazebo simulator.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between
Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
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Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 

To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 

Version History
Introduced in R2019b
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See Also
Blocks
Gazebo Blank Message | Gazebo Pacer | Gazebo Read | Gazebo Publish | Gazebo Subscribe | Gazebo
Select Entity

Functions
packageGazeboPlugin

Topics
“Perform Co-Simulation between Simulink and Gazebo”
“Control Differential Drive Robot in Gazebo with Simulink”
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Gazebo Blank Message
Create blank Gazebo command
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Gazebo Blank Message block creates a blank Gazebo message or a command based on the
specified type. The block output is a bus signal that contains the required elements for the type of
command. Use a Bus Assignment block to modify specific fields in the bus signal. The bus signal
initializes with zero value (ground).

To create blank Gazebo command, connect to a Gazebo simulation. Open the block mask and click
Configure Gazebo network and simulation settings. For more information see “Configure Gazebo
Simulation” on page 4-23.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands. To see a basic example, check “Perform Co-Simulation between Simulink and
Gazebo”.

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Output

Msg — Blank message
bus

Blank message, output as a bus signal. with elements relevant to the specific Message type.

The Msg output always outputs the most recent message received.
Data Types: bus

Parameters
Message type — Type of message
ApplyLinkWrench (default) | ApplyJointTorque | SetLinkWorldPose |
SetLinkLinearVelocity | SetLinkAngularVelocity | SetJointPosition |
SetJointVelocity

Click Select to get a list of message types available in Gazebo.

Sample time — Sampling time of input
0.001 (default) | positive
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Sample time indicates when, during simulation, the block produces outputs and if appropriate,
updates its internal state.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between
Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 

To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 
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Version History
Introduced in R2019b

See Also
Blocks
Gazebo Apply Command | Gazebo Pacer | Gazebo Read | Gazebo Publish | Gazebo Subscribe | Gazebo
Select Entity

Functions
packageGazeboPlugin

Topics
“Control Differential Drive Robot in Gazebo with Simulink”
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Gazebo Pacer
Settings for synchronized stepping between Gazebo and Simulink
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Gazebo Pacer block synchronizes the simulation times between Gazebo and Simulink.
Synchronization is important for ensuring your Simulink model and the Gazebo simulation behave
correctly. The block outputs a Boolean indicating successful synchronization. Synchronized stepping
is only supported for one Gazebo simulation. Your entire model, including referenced models, can
only contain one Gazebo Pacer block.

To ensure successful synchronization, connect to a Gazebo simulation. Open the block mask and click
Configure Gazebo network and simulation settings. For more information see “Configure Gazebo
Simulation” on page 4-26.

Select the Reset behavior to reset the Gazebo simulation on model restart or only reset simulation
time.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands. To see a basic example, check “Perform Co-Simulation between Simulink and
Gazebo”.

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Output

Status — Status of synchronization
0 | 1

Status of synchronization, output as either 0 or 1. A value of 0 indicates successful time syncing. A
value of 1 means the simulations are out of sync.
Data Types: uint8

Parameters
Reset behavior — Reset simulation time or scene
Reset Gazebo simulation time (default) | Reset Gazebo simulation time and scene

Select from the Reset behavior drop-down. Choose to reset the Gazebo simulator time only, or both
the simulator time and scene.
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Sample time — Sampling time of input
0.001 (default) | positive

Set the Sample time parameter to step the Gazebo simulation at the given rate. This parameter must
be a multiple of the maximum step size of the Gazebo solver.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between
Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 

To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 
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Version History
Introduced in R2019b

See Also
Blocks
Gazebo Apply Command | Gazebo Blank Message | Gazebo Read | Gazebo Publish | Gazebo Subscribe
| Gazebo Select Entity

Functions
packageGazeboPlugin

Topics
“Control Differential Drive Robot in Gazebo with Simulink”
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Gazebo Publish
Send custom messages to Gazebo server
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Gazebo Publish block sends custom messages to Gazebo server based on the topic and message
type that the block specifies.

To send custom messages, connect to a Gazebo simulation. Open the block mask and click Configure
Gazebo network and simulation settings. For more information see “Configure Gazebo
Simulation” on page 4-29.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands.

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Input

Msg — Gazebo custom message
bus

Gazebo custom message, specified as a bus signal, with elements relevant to the specific Topic and
Message type.
Data Types: bus

Parameters
Topic source — Source for specifying topic
From Gazebo (default) | Specify your own

To get a topic from an existing Gazebo simulation, select From Gazebo. Click the Select button to
see a list of available topics. To connect to a Gazebo simulation, click Configure Gazebo network
and simulation settings in the block mask.

To enter a custom topic without an active Gazebo connection, select Specify your own. Use the
Topic parameter to type the name of the message.

Topic — Topic name of custom message
/my_topic (default) | string
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Topic name of custom message, specified as a string.

To get a topic from an existing Gazebo simulation, select From Gazebo. Click the Select button to
see a list of available topics. To connect to a Gazebo simulation, click Configure Gazebo network
and simulation settings in the block mask.

To specify a topic without connecting, select Specify your own.

Message type — Gazebo custom message type
gazebo_msgs/TestPose (default) | string

Click Select to get a list of message types available in Gazebo. If you choose your Topic from a
connected Gazebo simulation, this parameter is set automatically.

Sample time — Sampling time of input
0.001 (default) | positive

Sample time indicates the interval at which messages are sent to the Gazebo simulator.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between
Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 

To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 
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Version History
Introduced in R2020b

See Also
Blocks
Gazebo Apply Command | Gazebo Blank Message | Gazebo Pacer | Gazebo Read | Gazebo Subscribe |
Gazebo Select Entity

Functions
packageGazeboPlugin | gazebogenmsg

Topics
“Perform Co-Simulation between Simulink and Gazebo”
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Gazebo Read
Receive messages from Gazebo server
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Gazebo Read block receives messages from the Gazebo server based on the topic and message
type that the block specifies. The block outputs the latest message received as a bus signal, Msg, and
a Boolean, IsNew, which indicates whether a message was received during the previous time step.

To receive messages from Gazebo server, connect to a Gazebo simulation. Open the block mask and
click Configure Gazebo network and simulation settings. For more information see “Configure
Gazebo Simulation” on page 4-32.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands. To see a basic example, check “Perform Co-Simulation between Simulink and
Gazebo”

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Output

IsNew — Status of messages in the previous time step
0 (default) | 1

Status of the message received, output as a Boolean, which indicates whether the block output Msg
was received in the previous time step.
Data Types: Boolean

Msg — Gazebo message
bus

Gazebo message, output as a bus signal, with elements relevant to the specific Topic and Message
type.

The Msg output always outputs the most recent message received.
Data Types: bus
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Parameters
Topic source — Source for specifying topic
From Gazebo (default) | Specify your own

To get a topic from an existing Gazebo simulation, select From Gazebo. Click the Select button to
see a list of available topics. To connect to a Gazebo simulation, click Configure Gazebo network
and simulation settings in the block mask.

To enter a custom topic without an active Gazebo connection, select Specify your own. Use the
Topic parameter to type the name of the message.

Topic — Topic name of message
/my_topic (default) | string

Topic name of message, specified as a string.

To get a topic from an existing Gazebo simulation, select From Gazebo. Click the Select button to
see a list of available topics. To connect to a Gazebo simulation, click Configure Gazebo network
and simulation settings in the block mask.

To specify a topic without connecting, select Specify your own.

Message type — Gazebo message type
gazebo_msgs/Pose (default) | gazebo_msgs/Image | gazebo_msgs/IMU | gazebo_msgs/
LaserScan | gazebo_msgs/JointState | gazebo_msgs/LinkState

Click Select to get a list of message types available in Gazebo. If you choose your Topic from a
connected Gazebo simulation, this parameter is set automatically.

Sample time — Sampling time of input
0.001 (default) | positive scalar

Sample time indicates when, during simulation, the block produces outputs and if appropriate,
updates its internal state.

Number of Joint Axis — Number of joint axis
2 (default) | positive integer in range [1, 100]

Select Make Joint Axis Related Bus Signal to Fixed Dimensions to convert the joint-
axis-related bus signal from variable dimension to fixed dimension. Then specify the number of joint
axis.

Dependencies

To enable this parameter, set Message type to gazebo_msgs/JointState and select the Make
Joint Axis Related Bus Signal to Fixed Dimensions check box.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between

4 Blocks

4-32



Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 

To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 

Version History
Introduced in R2019b
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See Also
Blocks
Gazebo Apply Command | Gazebo Blank Message | Gazebo Pacer | Gazebo Publish | Gazebo Subscribe
| Gazebo Select Entity

Functions
packageGazeboPlugin

Topics
“Control Differential Drive Robot in Gazebo with Simulink”
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Gazebo Select Entity
Select a Gazebo entity
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Gazebo Select Entity block retrieves the model name of a Gazebo entity, such as a link or joint,
from a simulated environment. The block outputs a string for both the model and associated joint or
link name. Use both these names when specifying commands using the Gazebo Apply Command
block.

Before selecting an entity, connect to a Gazebo simulation. Open the block mask and click Configure
Gazebo network and simulation settings. For more information see “Configure Gazebo
Simulation” on page 4-36.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands. To see a basic example, check “Perform Co-Simulation between Simulink and
Gazebo”

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Output

model — Model name of entity
model1 (default) | string (uint8[])

Model name of entity, output as string scalar. Strings are output as a variable-size uint8 array for
Gazebo.
Data Types: uint8

Joint/Link — Associated joint or link name of entity
joint1 (default) | string (uint8[])

Associated joint or link, output as a string scalar. Strings are output as a uint8 array for Gazebo.
Data Types: uint8

Parameters
Model Name — Choose model name
'model1/joint1' (default) | string scalar
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Choose a model by clicking Select, which brings up a list of available names available on the Gazebo
server. The block assumes you are already connected to a Gazebo simulation. If not, click Configure
Gazebo network and simulation settings in the block mask.

Output vector size upper bound — Upper limit of output array
128 (default)

Upper limit of the size of the output uint8 arrays, Model Name and Joint/Link. Increase the
upper bound when the names are longer than the default value 128.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between
Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 

To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 
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Version History
Introduced in R2019b

See Also
Blocks
Gazebo Apply Command | Gazebo Blank Message | Gazebo Pacer | Gazebo Read | Gazebo Publish |
Gazebo Subscribe

Functions
packageGazeboPlugin

Topics
“Control Differential Drive Robot in Gazebo with Simulink”
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Gazebo Subscribe
Receive custom messages from Gazebo server
Library: Robotics System Toolbox / Gazebo Co-Simulation

Description
The Gazebo Subscribe block receives custom messages from Gazebo server based on the topic and
message type that the block specifies. The block outputs the latest message received as a bus signal,
Msg, and a Boolean, IsNew, which indicates whether a message was received during the previous
time step.

To receive custom messages, connect to a Gazebo simulation. Open the block mask and click
Configure Gazebo network and simulation settings. For more information see “Configure Gazebo
Simulation” on page 4-39.

This block is part of a co-simulation interface between MATLAB and Gazebo for exchanging data and
sending commands.

Limitations
• Models that use this block do not support Code Generation or Rapid Accelerator mode.

Ports
Output

IsNew — Status of custom messages in the previous time step
0 (default) | 1

Status of the custom message received, output as a Boolean, which indicates whether the block
output Msg was received in the previous time step.
Data Types: Boolean

Msg — Gazebo custom message
bus

Gazebo custom message, output as a bus signal, with elements relevant to the specific Topic and
Message type.

The Msg output always outputs the most recent message received.
Data Types: bus
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Parameters
Topic source — Source for specifying topic
From Gazebo (default) | Specify your own

To get a topic from an existing Gazebo simulation, select From Gazebo. Click the Select button to
see a list of available topics. To connect to a Gazebo simulation, click Configure Gazebo network
and simulation settings in the block mask.

To enter a custom topic without an active Gazebo connection, select Specify your own. Use the
Topic parameter to type the name of the message.

Topic — Topic name of custom message
/my_topic (default) | string

Topic name of custom message, specified as a string.

To get a topic from an existing Gazebo simulation, select From Gazebo. Click the Select button to
see a list of available topics. To connect to a Gazebo simulation, click Configure Gazebo network
and simulation settings in the block mask.

To specify a topic without connecting, select Specify your own.

Message type — Gazebo custom message type
gazebo_msgs/TestPose (default) | string

Click Select to get a list of message types available in Gazebo. If you choose your Topic from a
connected Gazebo simulation, this parameter is set automatically.

Sample time — Sampling time of input
0.001 (default) | positive

Sample time indicates the interval at which messages are received from the Gazebo simulator.

More About
Configure Gazebo Simulation

Click Configure Gazebo network and simulation settings in the block mask to launch the
Configure Gazebo Simulation dialog box, which configures the synchronized stepping between
Gazebo and Simulink. You can select the Network Address and specify Hostname/IP Address
and Port of the computer running the Gazebo simulator with the Gazebo plugin installed. Then click
Test to test the connection to the running Gazebo simulator. You can also specify the Response
timeout in seconds. These settings apply to all Gazebo blocks for all open Simulink models.

Starting from R2022b, you can connect to multiple Gazebo simulations from one or more machines.
You can now specify a cell array of IP addresses and a cell array of port numbers in the MATLAB
workspace and then specify their variable names to the Hostname/IP Address and Port boxes,
respectively.

To connect to a single Gazebo session from MATLAB, specify the port number and IP address of the
computer running the Gazebo simulator.

portnum = 14580; 
ipaddress = '172.18.250.125'; 
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To connect to multiple Gazebo sessions from MATLAB, specify the port numbers and IP addresses of
the computers running the Gazebo simulator.

portnum = {14580,14581};
ipaddress = {'172.18.250.125','172.18.250.125'}; 

Version History
Introduced in R2020b

See Also
Blocks
Gazebo Apply Command | Gazebo Blank Message | Gazebo Pacer | Gazebo Read | Gazebo Publish |
Gazebo Select Entity

Functions
packageGazeboPlugin | gazebogenmsg

Topics
“Perform Co-Simulation between Simulink and Gazebo”
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Get Jacobian
Geometric Jacobian for robot configuration
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Get Jacobian block returns the geometric Jacobian relative to the base for the specified end
effector at the given configuration of a rigidBodyTree robot model.

The Jacobian maps the joint-space velocity to the end-effector velocity relative to the base coordinate
frame. The end-effector velocity equals:

ω is the angular velocity, υ is the linear velocity, and  is the joint-space velocity.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

Output

Jacobian — Geometric Jacobian of end effector
6-by-n matrix

Geometric Jacobian of the end effector with the specified configuration, Config, returned as a 6-by-n
matrix, where n is the number of degrees of freedom of the end effector. The Jacobian maps the joint-
space velocity to the end-effector velocity relative to the base coordinate frame. The end-effector
velocity equals:
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ω is the angular velocity, υ is the linear velocity, and  is the joint-space velocity.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Format) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

End effector — End effector for Jacobian
body name

End effector for Jacobian, specified as a body name from the Rigid body tree robot model. To
access body names from the robot model, click Select body.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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See Also
Blocks
Get Transform | Forward Dynamics | Inverse Dynamics | Gravity Torque | Joint Space Mass Matrix |
Velocity Product Torque

Classes
rigidBodyTree

Functions
geometricJacobian | importrobot | homeConfiguration | randomConfiguration
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Get Transform
Get transform between body frames
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Get Transform block returns the homogeneous transformation between body frames on the Rigid
body tree robot model. Specify a rigidBodyTree object for the robot model, and select a source
and target body in the block.

The block uses Config, the robot configuration (joint positions) input, to calculate the transformation
from the source body to the target body. This transformation is used to convert coordinates from the
source to the target body. To convert to base coordinates, use the base body name as the Target
body parameter.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

Output

Transform — Homogeneous transform
4-by-4 matrix

Homogeneous transform, returned as a 4-by-4 matrix.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Formation) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.
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Target body — Target body name
body name

Target body name, specified as a body name from the robot model specified in Rigid body tree. To
access body names from the robot model, click Select body. The target frame is the coordinate
system you want to transform points into.

Source body — Source body name
body name

Source body name, specified as a body name from the robot model specified in Rigid body tree.To
access body names from the robot model, click Select body. The source frame is the coordinate
system you want points transformed from.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix | Velocity Product Torque

Classes
rigidBodyTree

Functions
getTransform | importrobot | homeConfiguration | randomConfiguration

Topics
“Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”
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Gravity Torque
Joint torques that compensate gravity
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Gravity Torque block returns the joint torques required to hold the robot at a given configuration
with the current Gravity setting on the Rigid body tree robot model.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

Output

JointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a specific joint.
The number of joint torques is equal to the degrees of freedom (number of nonfixed joints) of the
robot.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Formation) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation
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• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Forward Dynamics | Inverse Dynamics | Get Jacobian | Joint Space Mass Matrix | Velocity Product
Torque

Classes
rigidBodyTree

Functions
gravityTorque | importrobot | homeConfiguration | randomConfiguration
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Inverse Dynamics
Required joint torques for given motion
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Inverse Dynamics block returns the joint torques required for the robot to maintain the specified
robot state. To get the required joint torques, specify the robot configuration (joint positions), joint
velocities, joint accelerations, and external forces.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

JointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the degrees of freedom
(number of nonfixed joints) of the robot.

JointAccel — Joint accelerations
vector

Joint accelerations, specified as a vector. The number of joint accelerations is equal to the degrees of
freedom of the robot.

FExt — External force matrix
6-by-n matrix

External force matrix, specified as a 6-by-n matrix, where n is the number of bodies in the robot
model. The matrix contains nonzero values in the rows corresponding to specific bodies. Each row is
a vector of applied forces and torques that act as a wrench for that specific body. Generate this matrix
using externalForce with a MATLAB Function block

Output

JointTorq — Joint torques
vector
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Joint torques, returned as a vector. Each element corresponds to a torque applied to a specific joint.
The number of joint torques is equal to the degrees of freedom (number of nonfixed joints) of the
robot.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Format) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix | Velocity Product
Torque

Classes
rigidBodyTree

Functions
inverseDynamics | externalForce | importrobot | homeConfiguration |
randomConfiguration
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Inverse Kinematics
Compute joint configurations to achieve an end-effector pose
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Inverse Kinematics block uses an inverse kinematic (IK) solver to calculate joint configurations
for a desired end-effector pose based on a specified rigid body tree model. Create a rigid body tree
model for your robot using the rigidBodyTree class. The rigid body tree model defines all the joint
constraints that the solver enforces.

Specify the RigidBodyTree parameter and the desired end effector inside the block mask. You can
also tune the algorithm parameters in the Solver Parameters tab.

Input the desired end-effector Pose, the Weights on pose tolerance, and an InitialGuess for the
joint configuration. The solver outputs a robot configuration, Config, that satisfies the end-effector
pose within the tolerances specified in the Solver Parameters tab.

Ports
Input

Pose — End-effector pose
4-by-4 homogeneous transform

End-effector pose, specified as a 4-by-4 homogeneous transform. This transform defines the desired
position and orientation of the rigid body specified in the End effector parameter.
Data Types: single | double

Weights — Weights for pose tolerances
six-element vector

Weights for pose tolerances, specified as a six-element vector. The first three elements of the vector
correspond to the weights on the error in orientation for the desired pose. The last three elements of
the vector correspond to the weights on the error in the xyz position for the desired pose.
Data Types: single | double

InitialGuess — Initial guess of robot configuration
vector

Initial guess of robot configuration, specified as a vector of joint positions. The number of positions is
equal to the number of nonfixed joints in the Rigid body tree parameter. Use this initial guess to
help guide the solver to a desired robot configuration. However, the solution is not guaranteed to be
close to this initial guess.
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Data Types: single | double

Output

Config — Robot configuration solution
vector

Robot configuration that solves the desired end-effector pose, specified as a vector. A robot
configuration is a vector of joint positions for the rigid body tree model. The number of positions is
equal to the number of nonfixed joints in the Rigid body tree parameter.
Data Types: single | double

Info — Solution information
bus

Solution information, returned as a bus. The solution information bus contains these elements:

• Iterations — Number of iterations run by the algorithm.
• PoseErrorNorm — The magnitude of the error between the pose of the end effector in the

solution and the desired end-effector pose.
• ExitFlag — Code that gives more details on the algorithm execution and what caused it to

return. For the exit flags of each algorithm type, see “Exit Flags”.
• Status — Character vector describing whether the solution is within the tolerance (1) or is the

best possible solution the algorithm could find (2).

Parameters
Block Parameters

Rigid body tree — Rigid body tree model
twoJointRigidBodyTree (default) | rigidBodyTree object

Rigid body tree model, specified as a rigidBodyTree object. Create the robot model in the MATLAB
workspace before specifying in the block mask.

End effector — End-effector name
'tool' | Select body

End-effector name for desired pose. To see a list of bodies on the rigidBodyTree object, specify the
Rigid body tree parameter, then click Select body.

Show solution diagnostic outputs — Enable info port
on (default) | off

Select to enable the Info port and get diagnostic info for the solver solution.

Solver Parameters

Solver — Algorithm for solving inverse kinematics
'BFGSGradientProjection' (default) | 'LevenbergMarquardt'

Algorithm for solving inverse kinematics, specified as either 'BFGSGradientProjection' or
'LevenbergMarquardt'. For details of each algorithm, see “Inverse Kinematics Algorithms”.
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Enforce joint limits — Enforce rigid body tree joint limits
on (default) | off

Select to enforce the joint limits specified in the Rigid body tree model.

Maximum iterations — Maximum number of iterations
1500 (default) | positive integer

Maximum number of iterations to optimize the solution, specified as a positive integer. Increasing the
number of iterations can improve the solution at the cost of execution time.

Maximum time — Maximum time
10 (default) | positive scalar

Maximum number of seconds that the algorithm runs before timing out, specified as a positive scalar.
Increasing the maximum time can improve the solution at the cost of execution time.

Gradient tolerance — Threshold on gradient of cost function
1e-7 (default) | positive scalar

Threshold on the gradient of the cost function, specified as a positive scalar. The algorithm stops if
the magnitude of the gradient falls below this threshold. A low gradient magnitude usually indicates
that the solver has converged to a solution.

Solution tolerance — Threshold on pose error
1e-6 (default) | positive scalar

Threshold on the magnitude of the error between the end-effector pose generated from the solution
and the desired pose, specified as a positive scalar. The Weights specified for each component of the
pose are included in this calculation.

Step tolerance — Minimum step size
1e-14 (default) | positive scalar

Minimum step size allowed by the solver, specified as a positive scalar. Smaller step sizes usually
mean that the solution is close to convergence.

Error change tolerance — Threshold on change in pose error
1e-12 (default) | positive scalar

Threshold on the change in end-effector pose error between iterations, specified as a positive scalar.
The algorithm returns if the changes in all elements of the pose error are smaller than this threshold.

Dependencies

This parameter is enabled when the Solver is Levenberg-Marquadt.

Use error damping — Enable error damping
on (default) | off

Select the check box to enable error damping, then specify the Damping bias parameter.

Dependencies

This parameter is enabled when the Solver is Levenberg-Marquadt.
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Damping bias — Damping on cost function
0.0025 (default) | positive scalar

Damping on cost function, specified as a positive scalar. The Levenberg-Marquadt algorithm has a
damping feature controlled by this scalar that works with the cost function to control the rate of
convergence.

Dependencies

This parameter is enabled when the Solver is Levenberg-Marquadt and Use error damping is on.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018b

References
[1] Badreddine, Hassan, Stefan Vandewalle, and Johan Meyers. "Sequential Quadratic Programming

(SQP) for Optimal Control in Direct Numerical Simulation of Turbulent Flow." Journal of
Computational Physics. 256 (2014): 1–16. doi:10.1016/j.jcp.2013.08.044.

[2] Bertsekas, Dimitri P. Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[3] Goldfarb, Donald. "Extension of Davidon’s Variable Metric Method to Maximization Under Linear
Inequality and Equality Constraints." SIAM Journal on Applied Mathematics. Vol. 17, No. 4
(1969): 739–64. doi:10.1137/0117067.

[4] Nocedal, Jorge, and Stephen Wright. Numerical Optimization. New York, NY: Springer, 2006.

[5] Sugihara, Tomomichi. "Solvability-Unconcerned Inverse Kinematics by the Levenberg–Marquardt
Method." IEEE Transactions on Robotics. Vol. 27, No. 5 (2011): 984–91. doi:10.1109/
tro.2011.2148230.

[6] Zhao, Jianmin, and Norman I. Badler. "Inverse Kinematics Positioning Using Nonlinear
Programming for Highly Articulated Figures." ACM Transactions on Graphics. Vol. 13, No. 4
(1994): 313–36. doi:10.1145/195826.195827.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Generated code for some hardware boards may fail to compile for models containing an Inverse
Kinematics block if the Maximum time parameter of the Inverse Kinematics block is set to a finite
value. To deploy to these boards, set Maximum time to Inf.

See Also
Objects
rigidBodyTree | generalizedInverseKinematics | inverseKinematics

Blocks
Get Transform | Inverse Dynamics

Topics
“Trajectory Control Modeling with Inverse Kinematics”
“Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
“Inverse Kinematics Algorithms”
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Joint Space Mass Matrix
Joint-space mass matrix for robot configuration
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Joint Space Mass Matrix block returns the joint-space mass matrix for the given robot
configuration (joint positions) for the Rigid body tree robot model.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

Output

MassMatrix — Joint-space mass matrix for configuration
positive-definite symmetric matrix

Joint-space mass matrix for the given robot configuration, returned as a positive-definite symmetric
matrix.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Formation) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

 Joint Space Mass Matrix

4-55



• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque | Velocity Product Torque

Classes
rigidBodyTree

Functions
massMatrix | importrobot | homeConfiguration | randomConfiguration

4 Blocks

4-56



Joint Space Motion Model
Model rigid body tree motion given joint-space inputs
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Joint Space Motion Model block models the closed-loop joint-space motion of a manipulator
robot, specified as a rigidBodyTree object. The motion model behavior is defined by the Motion
Type parameter.

For more details about the equations of motion, see “Joint-Space Motion Model”.

Ports
Input

qRef — Joint positions
n-element vector

n-element vector representing the desired joint positions of radians, where n is the number of
nonfixed joints in the rigidBodyTree object of the Rigid body tree parameter.
Dependencies

To enable this port, set the Motion Type parameter to Computed Torque Control, PD Control,
or Independent Joint Motion.

qRefDot — Joint velocities
n-element vector

n-element vector representing the desired joint velocities of radians per second, where n is the
number of nonfixed joints in the rigidBodyTree object of the Rigid body tree parameter.
Dependencies

To enable this port, set the Motion Type parameter to Computed Torque Control, or
Independent Joint Motion.

qRefDDot — Joint accelerations
n-element vector

n-element vector representing the desired joint velocities of radians per second squared, where n is
the number of nonfixed joints in the rigidBodyTree object of the Rigid body tree parameter.
Dependencies

To enable this port, set the Motion Type parameter to Computed Torque Control, PD Control,
or Independent Joint Motion.
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FExt — External forces acting on system
6-by-m matrix

A 6-by-m matrix of external forces for the m bodies in the rigidBodyTree object of the Rigid body
tree parameter.
Dependencies

To enable this port, set the Show external force input parameter to on.

Output

q — Joint positions
n-element vector

Joint positions output as an n-element vector in radians or meters, where n is the number of nonfixed
joints in the rigidBodyTree object of the Rigid body tree parameter.

qd — Joint velocities
n-element vector

Joint velocities output as an n-element vector in radians per second or meters per second, where n is
the number of nonfixed joints in the rigidBodyTree object of the Rigid body tree parameter

qdd — Joint accelerations
n-element vector

Joint accelerations output as an n-element vector in radians per second squared or meters per second
squared, where n is the number of nonfixed joints in the rigidBodyTree object of the Rigid body
tree parameter

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Formation) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a manipulator with revolute joints and two
degrees of freedom.

Motion Type — Type of motion computed by motion model
Computed Torque Control (default) | Independent Joint Motion | PD Control | Open Loop
Dynamics

Type of motion, specified as a string scalar or character vector that defines the closed-loop joint-
space behavior that the object models. Options are:

• Computed Torque Control — Compensates for full-body dynamics and assigns the error
dynamics specified in the Natural frequency and Damping ratio parameters.

• Independent Joint Motion — Models each joint as an independent second order system using
the error dynamics specified by the Natural frequency and Damping ratio parameters.

• PD Control — Uses proportional-derivative (PD) control on the joints based on the specified
Proportional gain and Derivative gain parameters.
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• Open Loop Dynamics — Disables inputs except for FExt if Show external force input is
enabled. This is an open-loop configuration.

Specification format — Inputs to control robot
Damping Ratio / Natural Frequency (default) | Step Response

Inputs to control the robot system. Options are:

• Damping Ratio / Natural Frequency — Setting the natural frequency using the Natural
frequency parameter of the system in Hz, and the damping ratio using the Damping ratio
parameter.

• Step Response — Model at discrete time-steps with a fixed settling time and overshoot using the
Settling time and the Overshoot parameters.

Dependencies

To enable this parameter, set the Motion Type parameter to Computed Torque Control or
Independent Joint Motion.

Damping ratio — Damping ratio of system
1 (default) | numeric scalar

Damping ratio use to decay system oscillations. A value of 1 results in no damping, whereas 0 fully
dampens the system.

Dependencies

To enable this parameter, set the Specification format parameter to Damping Ratio /
Natural Frequency.

Natural frequency — Natural frequency of system
10 (default) | numeric scalar

Frequency of the system oscillations if unimpeded, specified in Hz.

Dependencies

To enable this parameter, set the Specification format parameter to Damping Ratio /
Natural Frequency.

Settling time — Settling time of system
0.59 (default) | numeric scalar

The time taken for each joint to reach steady state, measured in seconds.

Dependencies

To enable this parameter, set the Specification format parameter to Step Response.

Overshoot — System overshoot
0.0 (default) | numeric scalar

The maximum value that the system exceeds the target position.

Dependencies

To enable this parameter, set the Specification format parameter to Step Response.
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Proportional gain — Proportional gain for PD Control
100 (default) | n-by-n matrix | scalar

Proportional gain for proportional-derivative (PD) control, specified as a scalar or n-by-n matrix,
where n is the number of nonfixed joints in the rigidBodyTree object of the Rigid body tree
parameter.

Dependencies

To enable this parameter, set the Specification format parameter to PD Control.

Derivative gain — Derivative gain for PD control
10 (default) | n-by-n matrix | scalar

Derivative gain for proportional-derivative (PD) control, specified as a scalar or n-by-n matrix, where
n is the number of nonfixed joints in the rigidBodyTree object of the Rigid body tree parameter

Dependencies

To enable this parameter, set the Specification format parameter to PD Control.

Show external force input — Display FExt port
off (default) | on

Enable this parameter to input external forces using the FExt port.

Dependencies

To enable this parameter, set the Motion Type parameter to Computed Torque Control, PD
Control, or Open Loop Dynamics.

Initial joint configuration — Initial joint positions
0 (default) | n-element vector | scalar

Initial joint positions, specified as a n-element vector or scalar in radians. n is the number of nonfixed
joints in the rigidBodyTree object in the Rigid body tree parameter.

Initial joint velocities — Initial joint velocities
0 (default) | n-element vector | scalar

Initial joint velocities, specified as a n-element vector or scalar in radians per second. n is the number
of nonfixed joints in the rigidBodyTree object in the Rigid body tree parameter.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

Tunable: No
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Version History
Introduced in R2019b

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Upper Saddle River, NJ: Pearson

Education, 2005.

[2] Spong, Mark W., Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control.
Hoboken, NJ: Wiley, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Task Space Motion Model

Classes
jointSpaceMotionModel | taskSpaceMotionModel
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Minimum Jerk Polynomial Trajectory
Generate minimum jerk polynomial trajectories through multiple waypoints
Library: UAV Toolbox / Algorithms

Robotics System Toolbox / Utilities

Description
The Minimum Jerk Polynomial Trajectory block generates minimum jerk polynomial trajectories that
pass through the waypoints at the times specified in time points. The block outputs positions,
velocities, accelerations, jerks, and time of arrival for achieving this trajectory based on the Time
input.

The block also accepts boundary conditions for waypoints. The block also outputs the coefficients for
the polynomials and status of the trajectory generation.

The initial and final values of positions, velocities, accelerations, and jerks of the trajectory are held
constant outside the time period defined in TimePoints input.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along the trajectory, specified as a scalar or vector.

• When the time is specified as a scalar, this value is synced with simulation time and is used to
specify the time point for sampling the trajectory. The block outputs a vector of the trajectory
variables at that instance in time.

• If the time is specified as a vector, the block outputs a matrix with each column corresponding to
each element of the vector.

Data Types: single | double

Waypoints — Waypoints positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix. n is the
dimension of the trajectory and p is the number of waypoints.
Data Types: single | double

TimePoints — Time points for waypoints of trajectory
p-element row vector
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Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Data Types: single | double

VelBC — Velocity boundary conditions for waypoints
n-by-p matrix

Velocity boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the velocity
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

AccelBC — Acceleration boundary conditions for waypoints
n-by-p matrix

Acceleration boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

JerkBC — Jerk boundary conditions for waypoints
n-by-p matrix

Jerk boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

Output

q — Positions of trajectory
n-element vector | n-by-m matrix

Positions of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.
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• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qd — Velocities of trajectory
n-element vector | n-by-m matrix

Velocities of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qdd — Accelerations of trajectory
n-element vector | n-by-m matrix

Accelerations of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qddd — Jerks of trajectory
n-element vector | n-by-m matrix

Jerks of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

TimeOfArrival — Time of arrival at each waypoint
p-element vector

Time of arrival at each waypoint, returned as a p-element vector. p is the number of waypoints.
Data Types: single | double

PolynomialCoefs — Polynomial coefficients
n(p–1)-by-8 matrix

Polynomial coefficients, returned as an n(p–1)-by-8 matrix. n is the dimension of the trajectory and p
is the number of waypoints. Each set of n rows defines the coefficients for the polynomial that
described each variable trajectory.

Dependencies

To enable this output port, select Show polynomial coefficients output port.
Data Types: single | double
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Status — Status of trajectory generation
three-element vector of the form [SingularityStatus MaxIterStatus MaxTimeStatus]

Status of trajectory generation, returned as a three-element vector of the form
[SingularityStatus MaxIterStatus MaxTimeStatus].

SingularityStatus returned as 0 or 1 indicates the occurrence of singularity. If singularity occurs
reduce the Maximum segment time to Minimum segment time ratio.

MaxIterStatus returned as 0 or 1 indicates if the number of iterations for the solver has exceeded
Maximum iterations.

MaxTimeStatus returned as 0 or 1 indicates if the time for the solver has exceeded Maximum time.

Dependencies

To enable this output port, select Show status output port.
Data Types: uint8

Parameters
Show boundary conditions input ports — Accept boundary condition inputs
off (default) | on

Select this parameter to input the velocity, acceleration, and jerk boundary conditions, at the VelBC,
AccelBC, and JerkBC ports, respectively.

Tunable: No

Show polynomial coefficients output port — Output polynomial coefficients
off (default) | on

Select this parameter to output polynomial coefficients at the PolynomialCoefs port.

Tunable: No

Show status output port — Output status
off (default) | on

Select this parameter to output status at the Status port.

Tunable: No

Time allocation — Enable time allocation
off (default) | on

Enable to specify time allocation for the trajectory using the Time weight, Minimum segment
time, Maximum segment time, Maximum iterations, and Maximum time parameters.

Tunable: No

Time weight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.
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Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Minimum segment time — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element positive row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum segment time — Maximum time segment length
1 (default) | positive scalar | (p–1)-element positive row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum iterations — Maximum iterations for solver
1500 (default) | positive integer scalar

Maximum iterations for solver, specified as a positive integer scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum time — Maximum time for solver
10 (default) | positive scalar

Maximum time for solver, specified as a positive scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Select the type of simulation to run from these options:
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• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Tips
For better performance, consider these options:

• Minimize the number of waypoint or parameter changes.
• Set the Simulate using parameter to Code generation. For more information, see

“Simulation Modes” (Simulink).

Version History
Introduced in R2022a

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.

[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
minjerkpolytraj | minsnappolytraj

Blocks
Minimum Snap Polynomial Trajectory
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Minimum Snap Polynomial Trajectory
Generate minimum snap polynomial trajectories through multiple waypoints
Library: UAV Toolbox / Algorithms

Robotics System Toolbox / Utilities

Description
The Minimum Snap Polynomial Trajectory block generates minimum snap polynomial trajectories that
pass through the waypoints at the times specified in time points. The block outputs positions,
velocities, accelerations, jerks, snap, and time of arrival for achieving this trajectory based on the
Time input.

The block also accepts boundary conditions for waypoints. The block also outputs the coefficients for
the polynomials and status of the trajectory generation.

The initial and final values of positions, velocities, accelerations, jerks, and snap of the trajectory are
held constant outside the time period defined in TimePoints input.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along the trajectory, specified as a scalar or vector.

• When the time is specified as a scalar, this value is synced with simulation time and is used to
specify the time point for sampling the trajectory. The block outputs a vector of the trajectory
variables at that instance in time.

• If the time is specified as a vector, the block outputs a matrix with each column corresponding to
each element of the vector.

Data Types: single | double

Waypoints — Waypoints positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix. n is the
dimension of the trajectory and p is the number of waypoints.
Data Types: single | double

TimePoints — Time points for waypoints of trajectory
p-element row vector
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Time points for the waypoints of the trajectory, specified as a p-element row vector. p is the number of
waypoints.
Data Types: single | double

VelBC — Velocity boundary conditions for waypoints
n-by-p matrix

Velocity boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the velocity
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

AccelBC — Acceleration boundary conditions for waypoints
n-by-p matrix

Acceleration boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the
acceleration boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

JerkBC — Jerk boundary conditions for waypoints
n-by-p matrix

Jerk boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the jerk
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.

Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

SnapBC — Snap boundary conditions for waypoints
n-by-p matrix

Snap boundary conditions for waypoints, specified as an n-by-p matrix. Each row sets the snap
boundary for the corresponding dimension of the trajectory n at each of p waypoints.

By default, the block uses a value of 0 at the boundary waypoints and NaN at the intermediate
waypoints.
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Dependencies

To enable this input port, select Show boundary conditions input ports.
Data Types: single | double

Output

q — Positions of trajectory
n-element vector | n-by-m matrix

Positions of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qd — Velocities of trajectory
n-element vector | n-by-m matrix

Velocities of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qdd — Accelerations of trajectory
n-element vector | n-by-m matrix

Accelerations of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qddd — Jerks of trajectory
n-element vector | n-by-m matrix

Jerks of the trajectory, returned as an n-element vector or n-by-m matrix.

• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

qdddd — Snaps of trajectory
n-element vector | n-by-m matrix

Snaps of the trajectory, returned as an n-element vector or n-by-m matrix.
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• If you specify a scalar for the Time input with an n-dimensional trajectory, the output is a vector
with n-elements.

• If you specify a vector of m-elements for the Time input, the output is an n-by-m matrix.

Data Types: single | double

TimeOfArrival — Time of arrival at each waypoint
p-element vector

Time of arrival at each waypoint, returned as a p-element vector. p is the number of waypoints.
Data Types: single | double

PolynomialCoefs — Polynomial coefficients
n(p–1)-by-10 matrix

Polynomial coefficients, returned as an n(p–1)-by-10 matrix. n is the dimension of the trajectory and p
is the number of waypoints. Each set of n rows defines the coefficients for the polynomial that
described each variable trajectory.

Dependencies

To enable this output port, select Show polynomial coefficients output port.
Data Types: single | double

Status — Status of trajectory generation
three-element vector of the form [SingularityStatus MaxIterStatus MaxTimeStatus]

Status of trajectory generation, returned as a three-element vector of the form
[SingularityStatus MaxIterStatus MaxTimeStatus].

SingularityStatus returned as 0 or 1 indicates the occurrence of singularity. If singularity occurs
reduce the Maximum segment time to Minimum segment time ratio.

MaxIterStatus returned as 0 or 1 indicates if the number of iterations for the solver has exceeded
Maximum iterations.

MaxTimeStatus returned as 0 or 1 indicates if the time limit for the solver has exceeded Maximum
time.

Dependencies

To enable this output port, select Show status output port.
Data Types: uint8

Parameters
Show boundary conditions input ports — Accept boundary condition inputs
off (default) | on

Select this parameter to input the velocity, acceleration, jerk, and snap boundary conditions, at the
VelBC, AccelBC, JerkBC, and SnapBC ports, respectively.

Tunable: No
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Show polynomial coefficients output port — Output polynomial coefficients
off (default) | on

Select this parameter to output polynomial coefficients at the PolynomialCoefs port.

Tunable: No

Show status output port — Output status
off (default) | on

Select this parameter to output status at the Status port.

Tunable: No

Time allocation — Enable time allocation
off (default) | on

Enable to specify time allocation for the trajectory using the Time weight, Minimum segment
time, Maximum segment time, Maximum iterations, and Maximum time parameters.

Tunable: No

Time weight — Weight for time allocation
100 (default) | positive scalar

Weight for time allocation, specified as a positive scalar.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Minimum segment time — Minimum time segment length
0.1 (default) | positive scalar | (p–1)-element positive row vector

Minimum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.

Maximum segment time — Maximum time segment length
1 (default) | positive scalar | (p–1)-element positive row vector

Maximum time segment length, specified as a positive scalar or (p–1)-element positive row vector. p
is the number of waypoints.

Tunable: No

Dependencies

To enable this parameter, select Time allocation.
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Maximum iterations — Maximum iterations for solver
1500 (default) | positive integer scalar

Maximum iterations for solver, specified as a positive integer scalar.

Tunable: No
Dependencies

To enable this parameter, select Time allocation.

Maximum time — Maximum time for solver
10 (default) | positive scalar

Maximum time for solver, specified as a positive scalar.

Tunable: No
Dependencies

To enable this parameter, select Time allocation.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

Select the type of simulation to run from these options:

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Tips
For better performance, consider these options:

• Minimize the number of waypoint or parameter changes.
• Set the Simulate using parameter to Code generation. For more information, see

“Simulation Modes” (Simulink).

Version History
Introduced in R2022a

References
[1] Bry, Adam, Charles Richter, Abraham Bachrach, and Nicholas Roy. “Aggressive Flight of Fixed-

Wing and Quadrotor Aircraft in Dense Indoor Environments.” The International Journal of
Robotics Research, 34, no. 7 (June 2015): 969–1002.
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[2] Richter, Charles, Adam Bry, and Nicholas Roy. “Polynomial Trajectory Planning for Aggressive
Quadrotor Flight in Dense Indoor Environments." Paper presented at the International
Symposium of Robotics Research (ISRR 2013), 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Functions
minjerkpolytraj | minsnappolytraj

Blocks
Minimum Jerk Polynomial Trajectory
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Polynomial Trajectory
Generate polynomial trajectories through waypoints
Library: Robotics System Toolbox / Utilities

Description
The Polynomial Trajectory block generates trajectories to travel through waypoints at the given time
points using either cubic, quintic, or B-spline polynomials. The block outputs positions, velocities, and
accelerations for achieving this trajectory based on the Time input. For B-spline polynomials, the
waypoints actually define the control points for the convex hull of the B-spline instead of the actual
waypoints, but the first and last waypoint are still met.

The initial and final values are held constant outside the time period defined in Time points.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along the trajectory, specified as a scalar or vector. In general, when specified as a scalar,
this value is synced with simulation time and is used to specify the time point for sampling the
trajectory. The block outputs a vector of the trajectory variables at that instant in time. If the time is
specified as a vector, the block outputs a matrix with each column corresponding to each element of
the vector.
Data Types: single | double

Waypoints — Waypoint positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix, where n is
the dimension of the trajectory and p is the number of waypoints. If you specify the Method as B-
spline, these waypoints actually define the control points for the convex hull of the B-spline, but the
first and last waypoint are still met.

Dependencies

To enable this input, set Waypoint Source to External.

TimePoints — Time points for waypoints of trajectory
p-element vector

Time points for waypoints of trajectory, specified as a p-element vector.

 Polynomial Trajectory

4-75



Dependencies

To enable this input, set Waypoint Source to External.

VelBC — Velocity boundary conditions for waypoints
n-by-p matrix

Velocity boundary conditions for waypoints, specified as an n-by-p matrix. Each row corresponds to
the velocity at each of the p waypoints for the respective variable in the trajectory.

Dependencies

To enable this input, set Method to Cubic Polynomial or Quintic Polynomial and Parameter
Source to External.

AccelBC — Acceleration boundary conditions for trajectory
n-by-p matrix

Acceleration boundary conditions for waypoints, specified as an n-by-p matrix. Each row corresponds
to the acceleration at each of the p waypoints for the respective variable in the trajectory.

Dependencies

To enable this parameter, set Method to Quintic Polynomial and Parameter Source to
External.

Output

q — Position of trajectory
scalar | vector | matrix

Position of the trajectory, specified as a scalar, vector, or matrix. If you specify a scalar for the Time
input with an n-dimensional trajectory, the output is a vector with n elements. If you specify a vector
of m elements for the Time input, the output is an n-by-m matrix.
Data Types: single | double

qd — Velocity of trajectory
scalar | vector | matrix

Velocity of the trajectory, specified as a scalar, vector, or matrix. If you specify a scalar for the Time
input with an n-dimensional trajectory, the output is a vector with n elements. If you specify a vector
of m elements for the Time input, the output is an n-by-m matrix.
Data Types: single | double

qdd — Acceleration of trajectory
scalar | vector | matrix

Acceleration of the trajectory, specified as a scalar, vector, or matrix. If you specify a scalar for the
Time input with an n-dimensional trajectory, the output is a vector with n elements. If you specify a
vector of m elements for the Time input, the output is an n-by-m matrix.
Data Types: single | double
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Parameters
Waypoint source — Source for waypoints
Internal (default) | External

Specify External to specify the Waypoints and Time points parameters as block inputs instead of
block parameters.

Waypoints — Waypoint positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix, where n is
the dimension of the trajectory and p is the number of waypoints. If you specify the Method as B-
spline, these waypoints actually define the control points for the convex hull of the B-spline, but the
first and last waypoint are still met.
Dependencies

To specify this parameter in the block mask, set Waypoint Source to Internal.

Time points — Time points for waypoints of trajectory
p-element vector

Time points for waypoints of trajectory, specified as a p-element vector, where p is the number of
waypoints.
Dependencies

To specify this parameter in the block mask, set Waypoint Source to Internal.

Method — Method for trajectory generation
Cubic Polynomial (default) | Quintic Polynomial | B-Spline

Method for trajectory generation, specified as either Cubic Polynomial, Quintic Polynomial,
or B-Spline.

Parameter source — Source for waypoints
Internal (default) | External

Specify External to specify the Velocity boundary conditions and Acceleration boundary
conditions parameters as block inputs instead of block parameters.

Velocity boundary conditions — Velocity boundary conditions for waypoints
zeroes(2,5) (default) | n-by-p matrix

Velocity boundary conditions for waypoints, specified as an n-by-p matrix. Each row corresponds to
the velocity at each of the p waypoints for the respective variable in the trajectory.
Dependencies

To enable this input, set Method to Cubic Polynomial or Quintic Polynomial.

Acceleration boundary conditions — Acceleration boundary conditions for trajectory
n-by-p matrix

Acceleration boundary conditions for waypoints, specified as an n-by-p matrix. Each row corresponds
to the acceleration at each of the p waypoints for the respective variable in the trajectory.
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Dependencies

To enable this parameter, set Method to Quintic Polynomial.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tips
For better performance, consider these options:

• Minimize the number of waypoint or parameter changes.
• Set the Waypoint source parameter to Internal.
• Set the Simulate using parameter to Code generation. For more information, see “Simulation

Modes” (Simulink).

Version History
Introduced in R2019a

References
[1] Farin, Gerald E. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.

San Diego, CA: Academic Press, 1993.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Rotation Trajectory | Transform Trajectory | Trapezoidal Velocity Profile Trajectory

Functions
bsplinepolytraj | cubicpolytraj | quinticpolytraj | rottraj | transformtraj |
trapveltraj
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Pure Pursuit
Linear and angular velocity control commands
Library: Robotics System Toolbox / Mobile Robot Algorithms

Navigation Toolbox / Control Algorithms

Description
The Pure Pursuit block computes linear and angular velocity commands for following a path using a
set of waypoints and the current pose of a differential drive vehicle. The block takes updated poses to
update velocity commands for the vehicle to follow a path along a desired set of waypoints. Use the
Max angular velocity and Desired linear velocity parameters to update the velocities based on the
performance of the vehicle.

The Lookahead distance parameter computes a look-ahead point on the path, which is an
instantaneous local goal for the vehicle. The angular velocity command is computed based on this
point. Changing Lookahead distance has a significant impact on the performance of the algorithm.
A higher look-ahead distance results in a smoother trajectory for the vehicle, but can cause the
vehicle to cut corners along the path. Too low of a look-ahead distance can result in oscillations in
tracking the path, causing unstable behavior. For more information on the pure pursuit algorithm, see
“Pure Pursuit Controller”.

Input/Output Ports
Input

Pose — Current vehicle pose
[x y theta] vector

Current vehicle pose, specified as an [x y theta] vector, which corresponds to the x-y position and
orientation angle, theta. Positive angles are measured counterclockwise from the positive x-axis.

Waypoints — Waypoints
[ ] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of waypoints. You can
generate the waypoints using path planners like mobileRobotPRM or specify them as an array in
Simulink.

Output

LinVel — Linear velocity
scalar in meters per second

Linear velocity, returned as a scalar in meters per second.
Data Types: double
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AngVel — Angular velocity
scalar in radians per second

Angular velocity, returned as a scalar in radians per second.
Data Types: double

TargetDir — Target direction for vehicle
scalar in radians

Target direction for the vehicle, returned as a scalar in radians. The forward direction of the vehicle
is considered zero radians, with positive angles measured counterclockwise. This output can be used
as the input to the TargetDir port for the Vector Field Histogram block.

Dependencies

To enable this port, select the Show TargetDir output port parameter.

Parameters
Desired linear velocity (m/s) — Linear velocity
0.1 (default) | scalar

Desired linear velocity, specified as a scalar in meters per second. The controller assumes that the
vehicle drives at a constant linear velocity and that the computed angular velocity is independent of
the linear velocity.

Maximum angular velocity (rad/s) — Angular velocity
1.0 (default) | scalar

Maximum angular velocity, specified as a scalar in radians per second. The controller saturates the
absolute angular velocity output at the given value.

Lookahead distance (m) — Look-ahead distance
1.0 (default) | scalar

Look-ahead distance, specified as a scalar in meters. The look-ahead distance changes the response
of the controller. A vehicle with a higher look-ahead distance produces smooth paths but takes larger
turns at corners. A vehicle with a smaller look-ahead distance follows the path closely and takes
sharp turns, but oscillate along the path. For more information on the effects of look-ahead distance,
see “Pure Pursuit Controller”.

Show TargetDir output port — Target direction indicator
off (default) | on

Select this parameter to enable the TargetDir out port. This port gives the target direction as an
angle in radians from the forward position, with positive angles measured counterclockwise.

Simulate using — Type of simulation to run
Code generation (default) | Interpreted execution

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.
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• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2019b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Classes
binaryOccupancyMap | occupancyMap | mobileRobotPRM

Topics
“Path Following for a Differential Drive Robot”
“Plan Path for a Differential Drive Robot in Simulink”
“Path Following with Obstacle Avoidance in Simulink®” (Navigation Toolbox)
“Pure Pursuit Controller”
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Rotation Trajectory
Generate trajectory between two orientations
Library: Robotics System Toolbox / Utilities

Description
The Rotation Trajectory block generates an interpolated trajectory between two rotation matrices.
The block outputs the rotation at the times given by the Time input, which can be a scalar or vector.

The trajectory is computed using quaternion spherical linear interpolation (SLERP) and finds the
shortest path between points. Select the Use custom time scaling check box to compute using a
custom time scaling. The block uses linear time scaling by default.

The initial and final values are held constant outside the time period defined in the Time interval
parameter.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along the trajectory, specified as a scalar or vector. In general, when specified as a scalar,
this value is synced with simulation time and is used to specify the time point for sampling the
trajectory. The block outputs a vector of the trajectory variables at that instant in time. If the time is
specified as a vector, the block outputs a matrix with each column corresponding to each element of
the vector.
Data Types: single | double

R0 — Initial orientation
four-element quaternion vector | 3-by-3 rotation matrix

Initial orientation, specified as a four-element quaternion vector or 3-by-3 rotation matrix. The
function generates a trajectory that starts at the initial orientation, R0, and goes to the final
orientation, RF.
Example: [1 0 0 0]'

Dependencies

To enable this input, set the Waypoint source to External.

To specify quaternions, set Rotation Format parameter to Quaternion.

To specify rotation matrices, set Rotation Format parameter to Rotation.
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Data Types: single | double

RF — Final orientation
four-element vector | 3-by-3 rotation matrix

Initial orientation, specified as a four-element vector or 3-by-3 rotation matrix. The function
generates a trajectory that starts at the initial orientation, R0, and goes to the final orientation, RF.
Example: [0 0 1 0]'

Dependencies

To enable this input, set the Waypoint source to External.

To specify quaternions, set Rotation Format parameter to Quaternion.

To specify rotation matrices, set Rotation Format parameter to Rotation.
Data Types: single | double

TimeInterval — Start and end times for trajectory
two-element vector

Start and end times for the trajectory, specified as a two-element vector.
Example: [0 10]

Dependencies

To enable this input, set the Waypoint source to External.
Data Types: single | double

TSTime — Time scaling time points
scalar | p-element vector

Time scaling time points, specified as a scalar or n p-element vector, where p is the number of points
for time scaling. By default, the time scaling is a linear time scaling spanning the TimeInterval.
Specify the actual time scaling values in TimeScaling.

If the Time input is specified at a time not specified by these points, interpolation is used to find the
right scaling time.

Dependencies

To enable this parameter, select the Use custom time scaling check box and set Parameter source
to External.

To specify a scalar, the Time input must be a scalar.
Data Types: single | double

TimeScaling — Time scaling vector and first two derivatives
three-element vector | 3-by-p matrix

Time scaling vector and its first two derivatives, specified as a three element vector or a 3-by-p
matrix, where m is the length of TSTime. By default, the time scaling is a linear time scaling
spanning the TimeInterval.
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For a nonlinear time scaling, specify the values of the time points in the first row. The second and
third rows are the velocity and acceleration of the time points, respectively. For example, to follow the
path with a linear velocity to the halfway point, and then jump to the end, the time-scaling would be:

s(1,:) = [0 0.25 0.5 1 1 1] % Position
s(2,:) = [1    1   1 0 0 0] % Velocity
s(3,:) = [0    0   0 0 0 0] % Acceleration

Dependencies

To enable this parameter, select the Use custom time scaling check box and set Parameter source
to External.

To specify a three-element vector, the Time and TSTime inputs must be a scalar.
Data Types: single | double

Output

R — Orientation vectors
4-by-m quaternion array | 3-by-3-by-m rotation matrix array

Orientation vectors, returned as a 4-by-m quaternion array or 3-by-3-by-m rotation matrix array,
where m is the number of points in the input to Time.
Dependencies

To get a quaternion array, set Rotation Format parameter to Quaternion.

To get a rotation matrix array, set Rotation Format parameter to Rotation.

omega — Orientation angular velocity
3-by-m matrix

Orientation angular velocity, returned as a 3-by-m matrix, where m is the number of points in the
input to Time.

alpha — Orientation angular acceleration
3-by-m matrix

Orientation angular acceleration, returned as a 3-by-m matrix, where m is the number of points in the
input to Time.

Parameters
Rotation format — Format for orientations
Quaternion (default) | Rotation Matrix

Select Rotation Matrix to specify the Initial rotation and Final rotation as 3-by-3 rotation
matrices and get the orientation output (port R) as a rotation matrix array. By default, the initial and
final rotations are specified as four-element quaternion vectors.

Waypoint source — Source for waypoints
Internal (default) | External

Specify External to specify the Initial rotation, Final rotation, and Time interval parameters as
block inputs instead of block parameters.
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Initial rotation — Initial orientation
[1 0 0 0]' (default) | four-element quaternion vector | 3-by-3 rotation matrix

Initial orientation, specified as a four-element quaternion vector or 3-by-3 rotation matrix. The
function generates a trajectory that starts at the Initial rotation and goes to the Final rotation.

Dependencies

To specify quaternions, set Rotation Format parameter to Quaternion.

To specify rotation matrices, set Rotation Format parameter to Rotation.
Data Types: single | double

Final rotation — Final orientation
[0 0 1 0]' (default) | four-element vector | 3-by-3 rotation matrix

Final orientation, specified as a four-element vector or 3-by-3 rotation matrix. The function generates
a trajectory that starts at the Initial rotation and goes to the Final rotation.

Dependencies

To specify quaternions, set Rotation Format parameter to Quaternion.

To specify rotation matrices, set Rotation Format parameter to Rotation.
Data Types: single | double

Time interval — Start and end times for trajectory
[0 10] (default) | two-element vector

Start and end times for the trajectory, specified as a two-element vector.
Data Types: single | double

Use custom time scaling — Enable custom time scaling
off (default) | on

Enable to specify custom time scaling for the trajectory using the Parameter Source, Time scaling
time, and Time scaling values parameters.

Parameter source — Source for waypoints
Internal (default) | External

Specify External to specify the Time scaling time and Time scaling values parameters as block
inputs instead of block parameters.

Dependencies

To enable this parameter, select the Use custom time scaling check box.

Time scaling time — Time scaling time points
2:0.1:3 (default) | scalar | p-element vector

Time scaling time points, specified as a scalar or p-element vector, where p is the number of points
for time scaling. By default, the time scaling is a linear time scaling spanning the Time interval.
Specify the actual time scaling values in Time scaling values.
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If the Time input is specified at a time not specified by these points, interpolation is used to find the
right scaling time.

Dependencies

To enable this parameter, select the Use custom time scaling check box.

To specify a scalar, the Time input must be a scalar.
Data Types: single | double

Time scaling values — Time scaling vector and first two derivatives
[0:0.1:1; ones(1,11); zeros(1,11)] (default) | three-element vector | 3-by-m matrix

Time scaling vector and its first two derivatives, specified as a three-element vector or 3-by-p matrix,
where p is the length of Time scaling time. By default, the time scaling is a linear time scaling
spanning the Time interval.

For a nonlinear time scaling, specify the values of the time points in the first row. The second and
third rows are the velocity and acceleration of the time points, respectively. For example, to follow the
path with a linear velocity to the halfway point, and then jump to the end, the time-scaling would be:

s(1,:) = [0 0.25 0.5 1 1 1] % Position
s(2,:) = [1    1   1 0 0 0] % Velocity
s(3,:) = [0    0   0 0 0 0] % Acceleration

Dependencies

To enable this parameter, select the Use custom time scaling checkbox.

To specify a three-element vector, the Time and TSTime inputs must be a scalar.
Data Types: single | double

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Tips
For better performance, consider these options:

• Minimize the number of waypoint or parameter changes.
• Set the Waypoint source parameter to Internal.
• Set the Simulate using parameter to Code generation. For more information, see “Simulation

Modes” (Simulink).
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Version History
Introduced in R2019a

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.

Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Polynomial Trajectory | Transform Trajectory | Trapezoidal Velocity Profile Trajectory

Functions
bsplinepolytraj | cubicpolytraj | quinticpolytraj | rottraj | transformtraj |
trapveltraj
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Task Space Motion Model
Model rigid body tree motion given task-space inputs
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Task Space Motion Model block models the closed-loop task-space motion of a manipulator,
specified as a rigidBodyTree object. The motion model behavior is defined using proportional-
derivative (PD) control.

For more details about the equations of motion, see “Task-Space Motion Model”.

Ports
Input

refPose — End-effector pose
4-by-4 matrix

Homogenous transformation matrix representing the desired end effector pose, specified in meters.

refVel — Joint velocities
6-element vector

6-element vector representing the desired linear and angular velocities of the end effector, specified
in meters per second and radians per second.

FExt — External forces
6-by-m matrix

6-by-m matrix representing external forces, specified in meters per second. m is the number of bodies
in the rigidBodyTree object in the Rigid body tree parameter.
Dependencies

To enable this port, set the Show external force input parameter to on.

Output

q — Joint positions
n-element vector

Joint positions output as an n-element vector in radians or meters, where n is the number of nonfixed
joints in the rigidBodyTree object in the Rigid body tree parameter.

qd — Joint velocities
n-element

4 Blocks

4-88



Joint velocities output as an n-element vector in radians per second or meters per second, where n is
the number of nonfixed joints in the rigidBodyTree object in the Rigid body tree parameter.

qdd — Joint accelerations
n-element

Joint accelerations output as an n-element in radians per second squared or meters per second
squared, where n is the number of nonfixed joints in the rigidBodyTree object in the Rigid body
tree parameter.

Parameters
Rigid body tree — Rigid body tree
twoJointRigidBodyTree object (default) | RigidBodyTree object

Robot model, specified as a RigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Formation) file using importrobot.

The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

End effector — End effector body
tool (default)

This parameter defines the body that will be used as the end effector, and for which the task space
motion is defined. The property must correspond to a body name in the rigidBodyTree object of the
property. Click Select body to select a body from the rigidBodyTree. If the rigidBodyTree is
updated without also updating the end effector, the body with the highest index is assigned by
default.

Proportional gain — Proportional gain for PD Control
500*eye(6) (default) | 6-by-6 matrix

Proportional gain for proportional-derivative (PD) control, specified as a 6-by-6 matrix.

Derivative gain — Derivative gain for PD Control
100*eye(6) (default) | 6-by-6 matrix

Derivative gain for proportional-derivative (PD) control, specified as a 6-by-6 matrix.

Joint damping — Damping ratios
[1 1] (default) | n-element vector | scalar

Damping ratios on each joint, specified as a scalar or n-element vector, where n is the number of
nonfixed joints in the rigidBodyTree object in the Rigid body tree parameter.

Show external force input — Display FExt port
off (default) | on

Click the check-box to enable this parameter to input external forces using the FExt port.

Initial joint configuration — Initial joint positions
0 (default) | n-element vector | scalar
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Initial joint positions, specified as a n-element vector or scalar in radians. n is the number of nonfixed
joints in the rigidBodyTree object in the Rigid body tree parameter.

Initial joint velocities — Initial joint velocities
0 (default) | n-element vector | scalar

Initial joint velocities, specified as a n-element vector or scalar in radians per second. n is the number
of nonfixed joints in the rigidBodyTree object in the Rigid body tree parameter.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.

Tunable: No

Version History
Introduced in R2019b

References
[1] Craig, John J. Introduction to Robotics: Mechanics and Control. Upper Saddle River, NJ: Pearson

Education, 2005.

[2] Spong, Mark W., Seth Hutchinson, and Mathukumalli Vidyasagar. Robot Modeling and Control.
Hoboken, NJ: Wiley, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Joint Space Motion Model

Classes
taskSpaceMotionModel | jointSpaceMotionModel
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Transform Trajectory
Generate trajectory between two homogeneous transforms
Library: Robotics System Toolbox / Utilities

Description
The Transform Trajectory block generates an interpolated trajectory between two homogenous
transformation matrices. The block outputs the transform at the times given by the Time input,
which can be a scalar or vector.

The trajectory is computed using quaternion spherical linear interpolation (SLERP) for the rotation
and linear interpolation for the translation. This method finds the shortest path between positions and
rotations of the transformation. Select the Use custom time scaling check box to compute the
trajectory using a custom time scaling. The block uses linear time scaling by default.

The initial and final values are held constant outside the time period defined in Time interval.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along trajectory, specified as a scalar or vector. In general, when specified as a scalar, this
value is synced with simulation time and is used to specify the time point for sampling the trajectory.
The block outputs a vector of the trajectory variables at that instant in time. If the time is specified as
a vector, the block outputs a matrix with each column corresponding to each element of the vector.
Data Types: single | double

T0 — Initial transformation matrix
4-by-4 homogeneous transformation

Initial transformation matrix, specified as a 4-by-4 homogeneous transformation. The function
generates a trajectory that starts at the initial orientation, T0, and goes to the final orientation, TF.
Example: trvec2tform([1 10 -1])

Dependencies

To enable this parameter, set the Waypoint source to External.
Data Types: single | double

TF — Final transformation matrix
4-by-4 homogeneous transformation
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Final transformation matrix, specified as a 4-by-4 homogeneous transformation. The function
generates a trajectory that starts at the initial orientation, T0, and goes to the final orientation, TF.
Example: trvec2tform([1 10 -1])

Dependencies

To enable this parameter, set the Waypoint source to External.
Data Types: single | double

TimeInterval — Start and end times for trajectory
two-element vector

Start and end times for the trajectory, specified as a two-element vector.
Example: [0 10]

Dependencies

To enable this parameter, set the Waypoint source to External.
Data Types: single | double

TSTime — Time scaling time points
scalar | p-element vector

Time scaling time points, specified as a scalar or n p-element vector, where p is the number of points
for time scaling. By default, the time scaling is a linear time scaling spanning the TimeInterval.
Specify the actual time scaling values in TimeScaling.

If the Time input is specified at a time not specified by these points, interpolation is used to find the
right scaling time.

Dependencies

To enable this parameter, select the Use custom time scaling check box and set Parameter source
to External.

To specify a scalar, the Time input must be a scalar.
Data Types: single | double

TimeScaling — Time scaling vector and first two derivatives
three-element vector | 3-by-p matrix

Time scaling vector and its first two derivatives, specified as a three element vector or a 3-by-p
matrix, where m is the length of TSTime. By default, the time scaling is a linear time scaling
spanning the TimeInterval.

For a nonlinear time scaling, specify the values of the time points in the first row. The second and
third rows are the velocity and acceleration of the time points, respectively. For example, to follow the
path with a linear velocity to the halfway point, and then jump to the end, the time-scaling would be:

s(1,:) = [0 0.25 0.5 1 1 1] % Position
s(2,:) = [1    1   1 0 0 0] % Velocity
s(3,:) = [0    0   0 0 0 0] % Acceleration
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Dependencies

To enable this parameter, select the Use custom time scaling check box and set Parameter source
to External.

To specify a three-element vector, the Time and TSTime inputs must be a scalar.
Data Types: single | double

Output

tform — Homogeneous transformation matrices
4-by-4-by-m homogenous matrix array

Homogeneous transformation matrices, returned as a 4-by-4-by-m homogenous matrix array, where m
is the number of points input to Time.

vel — Transform velocities
6-by-m matrix

Transform velocities, returned as a 6-by-m matrix, where m is the number of points input to Time.
Each row of the vector is the angular and linear velocity of the transform as [wx wy wz vx vy vz].
w represents an angular velocity and v represents a linear velocity.

alpha — Transform accelerations
6-by-m matrix

Transform velocities, returned as a 6-by-m matrix, where m is the number of points input to Time.
Each row of the vector is the angular and linear acceleration of the transform as [alphax alphay
alphaz ax ay az]. alpha represents an angular acceleration and a represents a linear
acceleration.

Parameters
Waypoint source — Source for waypoints
Internal (default) | External

Specify External to specify the Waypoints and Time points parameters as block inputs instead of
block parameters.

Initial transform — Initial transformation matrix
trvec2tform([1 10 -1]) (default) | 4-by-4 homogeneous transformation

Initial transformation matrix, specified as a 4-by-4 homogeneous transformation. The function
generates a trajectory that starts at the Initial transform and goes to the Final transform.
Data Types: single | double

Final transform — Final transformation matrix
eul2tform([0 pi pi/2]) (default) | 4-by-4 homogeneous transformation

Final transformation matrix, specified as a 4-by-4 homogeneous transformation. The function
generates a trajectory that starts at the Initial transform and goes to the Final transform.
Data Types: single | double
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Time interval — Start and end times for trajectory
[2 3] | two-element vector

Start and end times for the trajectory, specified as a two-element vector in seconds.
Data Types: single | double

Use custom time scaling — Enable custom time scaling
off (default) | on

Enable to specify custom time scaling for the trajectory using the Parameter Source, Time scaling
time, and Time scaling values parameters.

Parameter source — Source for waypoints
Internal (default) | External

Specify External to specify the Time scaling time and Time scaling values parameters as block
inputs instead of block parameters.

Dependencies

To enable this parameter, select the Use custom time scaling check box.

Time scaling time — Time scaling time points
2:0.1:3 (default) | scalar | p-element vector

Time scaling time points, specified as a scalar or p-element vector, where p is the number of points
for time scaling. By default, the time scaling is a linear time scaling spanning the Time interval.
Specify the actual time scaling values in Time scaling values.

If the Time input is specified at a time not specified by these points, interpolation is used to find the
right scaling time.

Dependencies

To enable this parameter, select the Use custom time scaling check box.

To specify a scalar, the Time input must be a scalar.
Data Types: single | double

Time scaling values — Time scaling vector and first two derivatives
[0:0.1:1; ones(1,11); zeros(1,11)] (default) | three-element vector | 3-by-m matrix

Time scaling vector and its first two derivatives, specified as a three-element vector or 3-by-p matrix,
where p is the length of Time scaling time. By default, the time scaling is a linear time scaling
spanning the Time interval.

For a nonlinear time scaling, specify the values of the time points in the first row. The second and
third rows are the velocity and acceleration of the time points, respectively. For example, to follow the
path with a linear velocity to the halfway point, and then jump to the end, the time-scaling would be:

s(1,:) = [0 0.25 0.5 1 1 1] % Position
s(2,:) = [1    1   1 0 0 0] % Velocity
s(3,:) = [0    0   0 0 0 0] % Acceleration
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Dependencies

To enable this parameter, select the Use custom time scaling checkbox.

To specify a three-element vector, the Time and TSTime inputs must be a scalar.
Data Types: single | double

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Tips
For better performance, consider these options:

• Minimize the number of waypoint or parameter changes.
• Set the Waypoint source parameter to Internal.
• Set the Simulate using parameter to Code generation. For more information, see “Simulation

Modes” (Simulink).

Version History
Introduced in R2019a

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control.

Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Polynomial Trajectory | Rotation Trajectory | Trapezoidal Velocity Profile Trajectory
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Functions
bsplinepolytraj | cubicpolytraj | quinticpolytraj | rottraj | transformtraj |
trapveltraj
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Trapezoidal Velocity Profile Trajectory
Generate trajectories though multiple waypoints using trapezoidal velocity profiles
Library: Robotics System Toolbox / Utilities

Description
The Trapezoidal Velocity Profile Trajectory block generates a trajectory through a given set of
waypoints that follow a trapezoidal velocity profile. The block outputs positions, velocities, and
accelerations for a trajectory based on the given waypoints and velocity profile parameters.

Ports
Input

Time — Time point along trajectory
scalar | vector

Time point along trajectory, specified as a scalar or vector. In general, when specified as a scalar, this
value is synced with simulation time and is used to specify the time point for sampling the trajectory.
The block outputs a vector of the trajectory variables at that instant in time. If the time is specified as
a vector, the block outputs a matrix with each column corresponding to each element of the vector.
Data Types: single | double

Waypoints — Waypoint positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix, where n is
the dimension of the trajectory and p is the number of waypoints.

Dependencies

To enable this input, set Waypoint source to External.

PeakVelocity — Peak velocity of the velocity profile
[1;2] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Peak velocity of the profile segment, specified as a scalar, vector, or matrix. This peak velocity is the
highest velocity achieved during the trapezoidal velocity profile.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.
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Dependencies

To enable this parameter, set Number of parameters to 1 or 2. Set Parameter 1 or Parameter 2 to
Peak Velocity. Then, set Parameter source to External.
Data Types: single | double

Acceleration — Acceleration of the velocity profile
[2;2] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Acceleration of the velocity profile, specified as a scalar, vector, or matrix. This acceleration defines
the constant acceleration from zero velocity to the PeakVelocity value.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. Set Parameter 1 or Parameter 2 to
Acceleration. Then, set Parameter source to External.
Data Types: single | double

EndTime — Duration of trajectory segment
[1;2] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Duration of trajectory segment, specified as a scalar, vector, or matrix.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. set Parameter 1 or Parameter 2 to
End Time. Then, set Parameter source to External.
Data Types: single | double

Acceleration Time — Duration of acceleration phase of velocity profile
[1;1] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Duration of acceleration phase of velocity profile, specified as a scalar, vector, or matrix.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. set Parameter 1 or Parameter 2 to
Acceleration Time. Then, set Parameter source to External.
Data Types: single | double
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Output

q — Position of trajectory
scalar | vector | matrix

Position of the trajectory, specified as a scalar, vector, or matrix. If you specify a scalar for the Time
input with an n-dimensional trajectory, the output is a vector with n elements. If you specify a vector
of m elements for the Time input, the output is an n-by-m matrix.
Data Types: single | double

qd — Velocity of trajectory
scalar | vector | matrix

Velocity of the trajectory, specified as a scalar, vector, or matrix. If you specify a scalar for the Time
input with an n-dimensional trajectory, the output is a vector with n elements. If you specify a vector
of m elements for the Time input, the output is an n-by-m matrix.
Data Types: single | double

qdd — Acceleration of trajectory
scalar | vector | matrix

Acceleration of the trajectory, specified as a scalar, vector, or matrix. If you specify a scalar for the
Time input with an n-dimensional trajectory, the output is a vector with n elements. If you specify a
vector of m elements for the Time input, the output is an n-by-m matrix.
Data Types: single | double

Parameters
Waypoint source — Source for waypoints
Internal (default) | External

Specify External to specify the Waypoints and Time points parameters as block inputs instead of
block parameters.

Waypoints — Waypoint positions along trajectory
n-by-p matrix

Positions of waypoints of the trajectory at given time points, specified as an n-by-p matrix, where n is
the dimension of the trajectory and p is the number of waypoints.

Number of parameters — Number of velocity profile parameters
0 (default) | 1 | 2

Number of velocity profile parameters, specified as 0, 1, or 2. Increasing this value adds Parameter
1 and Parameter 2 for specifying parameters for the velocity profile.

Parameter 1 — Velocity profile parameter
Peak Velocity | Acceleration | End Time | Acceleration Time

Velocity profile parameter, specified as Peak Velocity, Acceleration, End Time, or
Acceleration Time. Setting this parameter creates a parameter in the mask with this value as its
name.
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Dependencies

To enable this parameter, set Number of parameters to 1 or 2.

If Parameter Source is set to Internal, this parameter creates a parameter in the mask with this
value as its name.

If Parameter Source is set to External, this parameter creates an input port based on this value.

Parameter 2 — Velocity profile parameter
Peak Velocity | Acceleration | End Time | Acceleration Time

Velocity profile parameter, specified as Peak Velocity, Acceleration, End Time, or
Acceleration Time. Setting this parameter creates a parameter in the mask with this value as its
name.

Dependencies

To enable this parameter, set Number of parameters to 2.

If Parameter Source is set to Internal, this parameter creates a parameter in the mask with this
value as its name.

If Parameter Source is set to External, this parameter creates an input port based on this value.

Parameter source — Source for waypoints
Internal (default) | External

Specify External to specify the velocity profile parameters as block inputs instead of block
parameters.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2.

PeakVelocity — Peak velocity of the velocity profile
[1;2] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Peak velocity of the profile segment, specified as a scalar, vector, or matrix. This peak velocity is the
highest velocity achieved during the trapezoidal velocity profile.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. Then, set Parameter 1 or
Parameter 2 to Peak Velocity.
Data Types: single | double

Acceleration — Acceleration of the velocity profile
[2;2] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Acceleration of the velocity profile, specified as a scalar, vector, or matrix. This acceleration defines
the constant acceleration from zero velocity to the PeakVelocity value.
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A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. Then, set Parameter 1 or
Parameter 2 to Acceleration.
Data Types: single | double

EndTime — Duration of trajectory segment
[1;2] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Duration of trajectory segment, specified as a scalar, vector, or matrix.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. Then, set Parameter 1 or
Parameter 2 to End Time.
Data Types: single | double

Acceleration Time — Duration of acceleration phase of velocity profile
[1;1] (default) | scalar | n-element vector | n-by-(p – 1) matrix

Duration of acceleration phase of velocity profile, specified as a scalar, vector, or matrix.

A scalar value is applied to all elements of the trajectory and between all waypoints. An n-element
vector is applied to each element of the trajectory between all waypoints. An n-by-(p – 1) matrix is
applied to each element of the trajectory for each waypoint.

Dependencies

To enable this parameter, set Number of parameters to 1 or 2. Then, set Parameter 1 or
Parameter 2 to Acceleration Time.
Data Types: single | double

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No
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Tips
For better performance, consider these options:

• Minimize the number of waypoint or parameter changes.
• Set the Waypoint source parameter to Internal.
• Set the Simulate using parameter to Code generation. For more information, see “Simulation

Modes” (Simulink).

Version History
Introduced in R2019a

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning and Control.

Cambridge: Cambridge University Press, 2017.

[2] Spong, Mark W., Seth Hutchinson, and M. Vidyasagar. Robot Modeling and Control. John Wiley &
Sons, 2006.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Polynomial Trajectory | Rotation Trajectory | Transform Trajectory

Functions
bsplinepolytraj | cubicpolytraj | quinticpolytraj | rottraj | transformtraj |
trapveltraj
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Unicycle Kinematic Model
Compute vehicle motion using unicycle kinematic model
Library: Robotics System Toolbox / Mobile Robot Algorithms

Description
The Unicycle Kinematic Model block creates a unicycle vehicle model to simulate simplified car-like
vehicle dynamics. This model approximates a vehicle as a unicycle with a given wheel radius, Wheel
radius, that can spin in place according to a steering angular velocity, ω.

Ports
Input

dϕ/dt — Angular velocity of wheel
numeric scalar

Angular velocity of the wheel in radians per second.

Dependencies

To enable this port, set the Vehicle inputs parameter to Wheel Speed & Heading Angular
Velocity.

v — Vehicle speed
numeric scalar

Vehicle speed, specified in meters per second.

Dependencies

To enable this port, set the Vehicle inputs parameter to Vehicle Speed & Heading Angular
Velocity.

ω — Steering angular velocity
numeric scalar
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Angular velocity of the vehicle, specified in radians per second. A positive value steers the vehicle left
and negative values steer the vehicle right.

Output

state — Pose of vehicle
three-element vector

Current xy-position and orientation of the vehicle, specified as a [x y theta] vector in meters and
radians.

stateDot — Derivatives of state output
three-element vector

The linear and angular velocities of the vehicle, specified as a [xDot yDot thetaDot] vector in meters
per second and radians per second. The linear and angular velocities are calculated by taking the
derivative of the state output.

Parameters
Vehicle inputs — Type of speed and directional inputs for vehicle
Vehicle Speed & Heading Angular Velocity (default) | Wheel Speed & Heading Angular
Velocity

Type of speed and directional inputs to control the vehicle. Options are:

• Vehicle Speed & Heading Angular Velocity — Vehicle speed in meters per second with a
heading angular velocity in radians per second..

• Wheel Speed & Heading Angular Velocity — Wheel speed in radians per second with a
heading angular velocity in radians per second.

Wheel radius — Wheel radius of vehicle
0.1 (default) | positive numeric scalar

The wheel radius of the vehicle, specified in meters.

Wheel speed range — Minimum and Maximum vehicle speeds
[-Inf Inf] (default) | two-element vector

The minimum and maximum wheel speeds, specified in radians per second.

Initial state — Distance between front and rear axles
[0;0;0] (default) | three-element vector

The initial x-, y-position and orientation, theta, of the vehicle.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. For more
information, see “Simulation Modes” (Simulink).

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change.
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Tunable: No

Version History
Introduced in R2019b

References
[1] Lynch, Kevin M., and Frank C. Park. Modern Robotics: Mechanics, Planning, and Control 1st ed.

Cambridge, MA: Cambridge University Press, 2017.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Differential Drive Kinematic Model | Ackermann Kinematic Model | Bicycle Kinematic Model

Classes
unicycleKinematics

Topics
“Simulate Different Kinematic Models for Mobile Robots”
“Mobile Robot Kinematics Equations”
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Velocity Product Torque
Joint torques that cancel velocity-induced forces
Library: Robotics System Toolbox / Manipulator Algorithms

Description
The Velocity Product Torque block returns the torques that cancel the velocity-induced forces for the
given robot configuration (joint positions) and joint velocities for the Rigid body tree robot model.

Ports
Input

Config — Robot configuration
vector

Robot configuration, specified as a vector of positions for all nonfixed joints in the robot model, as set
by the Rigid body tree parameter. You can also generate this vector for a complex robot using the
homeConfiguration or randomConfiguration functions inside a Constant or MATLAB Function
block.

JointVel — Joint velocities
vector

Joint velocities, specified as a vector. The number of joint velocities is equal to the degrees of freedom
(number of nonfixed joints) of the robot.

Output

JointTorq — Joint torques
vector

Joint torques, specified as a vector. Each element corresponds to a torque applied to a specific joint.
The number of joint torques is equal to the degrees of freedom (number of nonfixed joints) of the
robot.

Parameters
Rigid body tree — Robot model
twoJointRigidBodyTree (default) | RigidBodyTree object

Robot model, specified as a rigidBodyTree object. You can also import a robot model from an
URDF (Unified Robot Description Formation) file using importrobot.
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The default robot model, twoJointRigidBodyTree, is a robot with revolute joints and two degrees
of freedom.

Simulate using — Type of simulation to run
Interpreted execution (default) | Code generation

• Interpreted execution — Simulate model using the MATLAB interpreter. This option shortens
startup time but has a slower simulation speed than Code generation. In this mode, you can
debug the source code of the block.

• Code generation — Simulate model using generated C code. The first time you run a
simulation, Simulink generates C code for the block. The C code is reused for subsequent
simulations, as long as the model does not change. This option requires additional startup time,
but the speed of the subsequent simulations is comparable to Interpreted execution.

Tunable: No

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
Forward Dynamics | Inverse Dynamics | Get Jacobian | Gravity Torque | Joint Space Mass Matrix

Classes
rigidBodyTree

Functions
velocityProduct | importrobot | homeConfiguration | randomConfiguration
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Inverse Kinematics Designer
Design inverse kinematics solvers, configurations, and waypoints

Description
The Inverse Kinematics Designer enables you to design an inverse kinematics solver for a URDF
robot model. You can adjust the inverse kinematics solver and add constraints to achieve the desired
behavior. Using this app you can:

• Import URDF robot models from URDF files or the MATLAB Workspace.
• Adjust inverse kinematics solvers and constraints.
• Create joint configurations and export waypoints.
• Export solver settings, constraints, and joint configurations to the MATLAB workspace.

Open the Inverse Kinematics Designer App
• MATLAB Toolstrip: On the Apps tab, under Robotics And Autonomous Systems, click Inverse

Kinematics Designer .
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• MATLAB command prompt: Enter inverseKinematicsDesigner.

Examples

Create Inverse Kinematics Designer Session

This example shows how to create, load, and save an Inverse Kinematics Designer session in addition
to loading a robot into the session. The completed file is attached for reference as
iksessiondata.mat. Load the session on page 5-8 with the inverseKinematicsDesigner
function or follow along with this example to create it.

Create Session

Open Inverse Kinematics Designer by using the inverseKinematicsDesigner function.

inverseKinematicsDesigner

Load Robot into Session

Use loadrobot from the Command Window to load a rigidBodyTree such as a Universal UR5e
into the Workspace. importrobot can also be used to import a rigidBodyTree object from any
robot URDF file.

uniUR5e = loadrobot("universalUR5e");

Click New Session and select uniUR5e from the table in the dialog and click OK. This table contains
all of the rigidBodyTree objects in the workspace. If you do not see your object in the table, verify
that it is in your workspace and click Refresh.

Alternatively, you can load a robot by selecting from a list of robot models that come with the
Robotics System Toolbox™ using the Rigid body tree drop down dialog and clicking OK.
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The Scene Canvas now contains the robot model, and the Scene Browser now displays all of the
rigid bodies of the robot.
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Add Collision Objects

To add a collision object into the Scene Canvas, a collision object must be in the Workspace. For
convenience, this example provides a simple box to use. For more information about creating collision
objects, see collisionMesh, collisionBox, collisionSphere, and collisionCylinder.

Load the collisionobject MAT file which will save a collisionBox named box to your
Workspace. Click Add Collision Object, and select box, from the table. Click OK to add it to the
Scene Canvas.
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The Scene Canvas now contains both the robot and the collision object. We will keep the object in
this example, but if you want to delete the collision object, find the collision object in the Scene
Browser under Scene, right-click the name of the collision object and click Delete.
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The position and Euler orientation of the object can viewed using the Scene Inspector when the
object is selected in either the Scene Canvas or Scene Browser. The properties listed will change
depending on the type of the collision object selected.

Save Session

To save this session, click Save Session. If this is the first time saving the session, name the file and
select a location to save it. The file will be saved as a MAT (*.mat) file containing all session data and
settings.
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Load Saved Session

To load a session file, click Open Session from the Inverse Kinematics Designer app or specify the
MAT file as a string to the inverseKinematicsDesigner. An example of this session has been
provided in this example as iksessiondata.mat.

inverseKinematicsDesigner("iksessiondata.mat")
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Use Scene Canvas and Move Robot

This example shows how to use the Scene Canvas and move a robot in it using the Inverse
Kinematics Designer app.

Load an existing session (iksessiondata.mat) or refer to the Create Inverse Kinematics Designer
Session example to create a session.

inverseKinematicsDesigner

Scene Canvas Controls

Use the axes toolbar in the Scene Canvas to control the view.
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To rotate the Scene Canvas, select the Rotate 3D button and click and drag within the scene.

Click the Pan button and click and drag within the scene to pan within the Scene Canvas.

Select the Zoom In, or Zoom Out buttons and click and drag up or down to zoom in or out of an area
within the Scene Canvas respectively.

Click the Restore View button to revert to the original default view.

Move Robot

Move the robot using constraints such as the preset Marker Pose Target constraint. The Marker Pose
Target constraint is the simplest constraint to use to move the robot. This constraint sets a target
pose on the last body in the robot model. In this case the marker body is set to tool0. The marker is
visualized on top of the selected marker body with the red, green, and blue linear and circular
indicators in the Scene Canvas. Clicking and dragging the linear or circular indicators will change
the target position and Euler orientation respectively. The colors correspond to the axes colors
indicated in the bottom left of the Scene Canvas.
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Click Marker Pose Constraint to open the Constraint tab. From the Constraint tab, set cartesian
position in meters, Euler orientation in degrees, and the weights and tolerances of the position and
orientation. The marker body can be changed in either the Constraint tab under End Effector Body
list or in the Marker Body list in the Inverse Kinematics tab. Click Apply to save any changes, and
click Close Constraint to exit the Constraint tab. Note that the specified Euler angles are
computed using XYZ sequence.

The Marker Pose Target constraint can also be toggled on or off by using clearing or selecting the
check box next to the Marker Pose Target constraint in the Constraints Browser.

Solution Details

When the Marker Pose Target is moved, it sets the target pose and the inverse kinematics solver
solves for a configuration where the selected marker body reaches the target pose. If it cannot find a
solution to the target pose, the robot will move to the best available solution and the marker body will
not move to the Marker Pose Target. This kind of solution can be identified visually by the constraint
icon in the Constraints Browser. The icon with red x shows that the constraint is not met, while the
green check shows that the constraint is being met.
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To find more information about why the solver failed to reach the solution, click the Report Status to
see the details of the solver's solution. The number of Iterations and Number of Random Restarts
list the number of times that the solver executed each respectively. The Constraints Violations
shows struct array of all the conflicts that can be displayed in the command window. The status will
show success if the solver successfully solves for the target pose, or best available if the solver
is showing the best available solution it found if it could not reach the target pose. Exit Flag provides
more detail on the execution of the specific solver algorithm. See “Inverse Kinematics Algorithms” for
more information about the different exit flag types.

To troubleshoot why a solver failed to reach a solution, see “Resolving Constraint Conflict” on page 5-
31 for some tips.

Create Collision-Free Configurations and Export Waypoints

This example shows how to use Inverse Kinematics Designer to create joint configurations and
check for collisions using the Scene Inspector. This example uses data and skills from “Create
Inverse Kinematics Designer Session” on page 5-3, and “Use Scene Canvas and Move Robot” on page
5-9. Refer to those examples before continuing.

Load Session

Use inverseKinematicsDesigner with the iksessiondata.mat sesson file to load a robot with a
basic collision object in the scene.

inverseKinematicsDesigner
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Create Configurations

Use the Configurations Panel to create, modify, and view configurations.

Before moving the robot, click Store Configuration to save the current joint configuration of the
robot as shown in the Scene Canvas. This adds the configuration to the table in the Configurations
Panel with a default configuration name, the Collision Status, and Value of each joint as a vector.
Both the name and value of each configuration can be edited by double-clicking the respective
element. Rename this configuration to home and leave its Value at [0.00 0.00 0.00 0.00 0.00
0.00].

Create another configuration, but this time making it collide with the box. Set the end-effector into
the center of the box at [-0.5 0.5 0] using the Marker Pose Constraint, and store the
configuration. To switch the view between multiple configurations, select a configuration, click Snap
to Configuration or click the forward or backward step buttons to step to switch the current
configuration.
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Check Collisions

Click Check Collisions > Check All Configurations to update the Collision Status of all the stored
configurations. To check one configuration, select desired configuration, click Snap to
Configuration, and click Check Collisions > Check Current Configuration to update the
Collision Status of the currently selected configuration.
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After the collision checking, the Collision Status of the first and second configuration contain PASS
and FAIL respectively. Select the configuration that failed the collision check. The bodies in the
Scene Browser update for the selected configuration to display an red x or green check icon,
indicating that the body is in-collision or collision-free respectively. The bodies marked as in-collision
will also be highlighted in red in the Scene Canvas. Note that flange and tool0 are indicated to be
collision-free even though they appear to be positionally in-collision. This is because those bodies are
just frames and do not contain collision meshes. If you intend to check for collisions, ensure before
importing any robot that the physical bodies of your robot contain collision meshes.
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Select the box, either by clicking on it in the Scene Browser, or in the Scene Canvas, and then
inspect the States pane. The States pane contains the position, orientation, collision status, and a
list of all the known collisions since the last collision check. The Known Collisions list shows all of
the bodies colliding with the selected body. Selecting any of the bodies from the list and clicking
Inspect Selected Body will switch the Scene Inspector to that body.
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Create Configuration Path

To create a path, add configurations to the table sequential sequentially. Since the second
configuration is in-collision with the box, select it and click delete.

Set the target marker pose to behind the box at [-0.9 0.0 0.1], and store the configuration. This
configuration will the be goal configuration so rename it as goal.

5 Apps

5-18



Snap to configuration home and add an additional configuration over the box at [-0.5 0.5 0.5] to
act as an intermediate configuration between home and goal. If a configuration needs to be modified,
snap to that configuration, adjust the target marker pose, save a new configuration, and delete the
old configuration. Click the move configuration buttons to move the new configuration between the
home and goal configurations.
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Click Check Collisions > Check All Configurations to check all the configurations for collisions. If
a configuration does not pass, adjust it as necessary.

Export Configurations as Waypoints

Saving the session will also save the stored configurations within the session, but to export the
configurations as waypoints to the MATLAB™ Workspace, click Export > Configurations. Select all
of the configurations to export, specify the name of the waypoint matrix in Waypoint matrix name
and click Export. Check your workspace for a matrix containing waypoints. Note that the size of the
waypoint matrix is dependent on the number of configurations exported and the number of joints of
the robot, and will be exported in row format. The dimensions of the waypoint matrix for this example
is 3x6.
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• “Plan Manipulator Path for Dispensing Task Using Inverse Kinematics Designer”
• “Create Constrained Inverse Kinematics Solver Using Inverse Kinematics Designer”

Parameters
Inverse Kinematics — Manage session, check collisions, import and export solver/
constraints/configurations
tab

Use the Inverse Kinematics tab to manage session, add and edit constraints, check collisions for
configurations, and import and export solvers, constraints, and configurations. The parameters and
buttons in this tab are usable only after a session has been created or loaded.

Parameters/Buttons Description
New Session Click New Session to load a specified robot from

the workspace or from the lists of robots in the
robot library using the New Session dialog box.
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Parameters/Buttons Description
Open Session Click Open Session to load a saved session MAT-

file.
Save Session Click Save Session to save the current session as

a MAT-file.
Import • Click Import > Solver to import a solver

from the workspace using the Import Inverse
Kinematics Solver dialog box.

• Click Import > Constraints to import
constraint(s) from the workspace using the
Import Inverse Kinematics Constraints
dialog box.

• Click Import > Configurations to import
configuration(s) from the workspace using the
Import Joint Configurations dialog box.

Add Collision Object Click Add Collision Object to add collision
objects to the scene from the workspace using
the Add Collision Object dialog box.

Add Constraint Click Add Constraint to add a constraint to the
inverse kinematics solver using the Constraint
tab.

Edit Constraint Click Edit Constraint to edit the selected solver
constraint using the Constraint tab.

Refresh Solver Click Refresh Solver to run the inverse
kinematics solver using the current configuration
as the initial guess.

Solver Settings Click Solver Settings to edit the inverse
kinematics solver settings using the Solver tab.

Report Status Click Report Status to view the status of the
most recent inverse kinematics solver solution
using the Solution Report dialog box.

Marker Pose Constraint Click Marker Pose Constraint to edit the
Marker Pose Target from the Constraint tab.

Marker Body Select a body from the list of bodies in the loaded
robot model to be constrained by the marker pose
target constraint. By default, Marker Body is set
to the last body in the robot model.
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Parameters/Buttons Description
Check Collisions • Click Check Collisions > Check Current

Configuration to check the current
configuration for collisions with collision
objects in the scene.

• Click Check Collisions > Check All
Configurations to check the all stored
configurations for any collisions with collision
objects in the scene.

• Select Ignore Self-Collisions to ignore
collisions between bodies of the robot.

Export • Click Export > Solver and Constraints to
export the current solver and constraints to
the workspace as objects using the Export
Solver and Constraints dialog box.

• Click Export > Configurations to export
configurations from the Configurations
Panel to the workspace as a matrix using the
Export Waypoints dialog box.

Solver — Solver settings
tab

These parameters specify settings for the inverse kinematics solver. To access these parameters, open
the Solver tab. To open the Solver tab, on the Inverse Kinematics tab, select Solver Settings.

Parameters Description
Solver Algorithm Inverse kinematics solver algorithm, specified as

one of these options:

• BFGS Gradient Projection (default)
• Levenberg-Marquardt

For more information on how to select a solver,
see “Choose an Algorithm”.

Max Iterations Maximum number of iterations for the inverse
kinematics solver to run, specified as a positive
integer. Default is 50.

Max Time Maximum time that the inverse kinematics solver
can search for a solution, specified as a positive
scalar in seconds. Default is 5.

Enforce Joint Limits Select to set the inverse kinematics solver to
enforce joint limits from the robot model. Default
is on.

For more details about enforcing joint limits, see
“Solver Parameters”.
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Parameters Description
Allow Random Restart Select to allow the inverse kinematics solver to

restart with a different randomly generated initial
guess if the algorithm approaches a solution that
does not satisfy the constraints. Default is on.

For more details about enforcing joint limits, see
“Solver Parameters”.

Click Reset Settings > Reset Settings and Reset Settings > Reset To Default Settings to reset
the inverse kinematics solver settings to the last stored value and default settings respectively.

After editing the solver settings, click Apply to Solver to apply changes to the current inverse
kinematics solver.

Constraint — Add or edit constraint
tab

Click Add Constraint in the Inverse Kinematics tab to open the Constraint tab to create a
constraint. Set the name of the constraint and select the desired constraint. The Constraint tab also
contains an additional section containing parameters for the corresponding selected constraints:

• Pose Constraint — Constraint that assigns a target pose to a body. See the corresponding tab
section, Pose Constraint, and MATLAB object, constraintPoseTarget, for more information.

• Cartesian Bounds Constraint — Constraint that defines a bounded target region for an end
effector pose. See the corresponding tab section, Cartesian Bounds Constraint, and MATLAB
object, constraintCartesianBounds, for more information.

• Aiming Constraint — Constraint that assigns custom joint limits. See the corresponding tab
section, Aiming Constraint, and MATLAB object, constraintAiming, for more information.

• Joint Bounds Constraint — Constraint that assigns custom joint limits. See the corresponding
tab section, Joint Bounds Constraint, and MATLAB object, constraintJointBounds, for more
information.

After setting the constraint parameters, click Apply to save your changes and Close Constraint. All
unsaved changes will be lost.

Pose Constraint — Pose constraint settings
tab section

Click Pose Constraint in the Constraint tab to open the Pose Constraint tab section to create a
constraint.

Parameter Description
End Effector Body End effector body, specified as a selection from a

list of bodies in the loaded robot model. Default is
set to the last body in the loaded robot model.

Reference Body Reference body, specified as a selection from a
list of bodies in the loaded robot model. Default is
set to the first body in the loaded robot model.

 Inverse Kinematics Designer

5-25



Parameter Description
X Target x position of the end effector in the

reference frame of the Reference Body,
specified as a scalar in meters. Default is 0.

Y Target y position of the end effector in the
reference frame of the Reference Body,
specified as a scalar in meters. Default is 0.

Z Target z position of the end effector in the
reference frame of the Reference Body,
specified as a scalar in meters. Default is 0.

Euler X Target Euler x rotation of the end effector body in
the reference frame of the Reference Body,
specified as a scalar in degrees. Default is 0.

Euler Y Target Euler y rotation of the end effector body in
the reference frame of the Reference Body,
specified as a scalar in degrees. Default is 0.

Euler Z Target Euler z rotation of the end effector body in
the reference frame of the Reference Body,
specified as a scalar in degrees. Default is 0.

Position Tolerance Tolerance for the end effector position, specified
as a nonnegative scalar in meters. Default is
0.01.

Position Weight Weight for the end effector position, specified as
a nonnegative scalar. Default is 1.

Orientation Tolerance Tolerance for the end effector orientation,
specified as a nonnegative scalar in degrees.
Default is 1.

Orientation Weight Weight for the end effector orientation, specified
as a nonnegative scalar. Default is 1.

Cartesian Bounds Constraint — Cartesian bounds constraint settings
tab section

Click Cartesian Bounds Constraint in the Constraint tab to open the Cartesian Bounds
Constraint tab section to create a constraint.

Parameter Description
End Effector Body End effector body, specified as a selection from a

list of bodies in the loaded robot model. Default is
set to the last body in the loaded robot model.

Reference Body Reference body, specified as a selection from a
list of bodies in the loaded robot model. Default is
set to the first body in the loaded robot model.

X Target x position of the end effector in the
reference frame of the Reference Body,
specified as a scalar in meters. Default is 0.
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Parameter Description
Y Target y position of the end effector in the

reference frame of the Reference Body,
specified as a scalar in meters. Default is 0.

Z Target z position of the end effector in the
reference frame of the Reference Body,
specified as a scalar in meters. Default is 0.

Euler X Target Euler x rotation of the end effector body in
the reference frame of the Reference Body,
specified as a scalar in degrees. Default is 0.

Euler Y Target Euler y rotation of the end effector body in
the reference frame of the Reference Body,
specified as a scalar in degrees. Default is 0.

Euler Z Target Euler z rotation of the end effector body in
the reference frame of the Reference Body,
specified as a scalar in degrees. Default is 0.

X Min Minimum x bound on end effector position
relative to the reference frame of the Reference
Body, specified as a scalar in meters. Default is
-0.5.

Y Min Minimum y bound on end effector position
relative to the reference frame of the Reference
Body, specified as a scalar in meters. Default is
-0.5

Z Min Minimum z bound on end effector position
relative to the reference frame of the Reference
Body, specified as a scalar in meters. Default is
-0.5

X Max Maximum x bound on end effector position
relative to the reference frame of the Reference
Body, specified as a scalar in meters. Default is
0.5

Y Max Maximum y bound on end effector position
relative to the reference frame of the Reference
Body, specified as a scalar in meters. Default is
0.5

Z Max Maximum z bound on end effector position
relative to the reference frame of the Reference
Body, specified as a scalar in meters. Default is
0.5

X Weight Weight of the constraint on x bound, specified as
a scalar. Default is 1.

Y Weight Weight of the constraint on y bound, specified as
a scalar. Default is 1.

Z Weight Weight of the constraint on z bound, specified as
a scalar. Default is 1.
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Aiming Constraint — Aiming constraint settings
tab section

Click Aiming Constraint in the Constraint tab to open the Aiming Constraint tab section to
create a constraint.

Parameter Description
End Effector Body End effector body, specified as a selection from a

list of bodies in the loaded robot model. Default is
set to the last body in the loaded robot model.

Reference Body Reference body, specified as a selection from a
list of bodies in the loaded robot model. Default is
set to the first body in the loaded robot model.

X Target Target x position relative to Reference Body,
specified as a scalar in meters. Default is 0.

Y Target Target y position relative to Reference Body,
specified as a scalar in meters. Default is 0.

Z Target Target z position relative to Reference Body,
specified as a scalar in meters. Default is 0.

Angular Tolerance Maximum allowed angular tolerance, specified as
a nonnegative scalar in degrees. Default is 1.

Constraint Weight Weight of constraint, specified as a scalar. Default
is 1.

Joint Bounds Constraint — Joint bounds constraint settings
tab section

Click Joint Bounds Constraint in the Constraint tab to open the Joint Bounds Constraint tab
section to create a constraint.

Parameter Description
Upper Joint Limits Upper joint limit angles, specified as a N-element

row vector of angles in degrees, where N is the
number of moving joints in the robot model.
Default is 180*ones(1,N).

Lower Joint Limits Lower joint limit angles, specified as a N-element
row vector of angles in degrees, where N is the
number of moving joints in the robot model.
Default is -180*ones(1,N).

Joint Limit Weights Joint limit weights, specified as a N-element row
vector where N is the number of moving joints in
the robot model. Default is ones(1,N).

New Session — Start new session and select robot model

dialog box
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Start new session and select robot model as a rigidBodyTree either from the Rigid body tree list
or the MATLAB workspace. To import a robot into the workspace, use either the loadrobot function
or importrobot function.

For more information about how to create a rigid body tree, see “Build Basic Rigid Body Tree
Models”.

For a full list of all the rigid body trees included with the Robotics System Toolbox, see the
robotname input of loadrobot.

Add Collision Object — Add collision meshes from workspace

dialog box

Add collision meshes from the MATLAB workspace, specified as collisionBox,
collisionCylinder, collisionSphere, or collisionMesh objects. The Add Collision Object
dialog box is accessible by clicking Add Collision Object in the Inverse Kinematics tab.

Import Inverse Kinematics Solver — Import inverse kinematics solver

dialog box

Import an inverse kinematics solver from the MATLAB workspace, specified as either a
generalizedInverseKinematics, or inverseKinematics object. Solvers in the Workspace
appear in the Available solvers table. Select a solver and click Import to import the solver into the
Inverse Kinematics Designer app. If a solver from the Workspace does not appear in the Available
solvers table, click Refresh.

Import Joint Configurations — Import joint configurations

dialog box

Import joint configurations from the MATLAB workspace, specified as an M-by-N matrix of doubles
where M is the number of configurations, and N is the number of moveable joints in the robot.
Configuration data in the Workspace appear in the Configurations in the workspace table. Select
configuration data and click Import to import the configuration data into the Inverse Kinematics
Designer app.

If a configuration in the Workspace does not appear in the Configurations in the workspace table,
click Refresh.

Import Inverse Kinematics Constraints — Import inverse kinematics constraints

dialog box

Import inverse kinematics constraints from the Workspace, specified as a constraintAiming,
constraintPoseTarget, constraintCartesianBounds, or constraintJointBounds object.
Constraint objects in the Workspace appear in the Configurations in the workspace table. Select
the desired constraint objects and click Import to import the constraints into the Inverse
Kinematics Designer app.

If a configuration in the Workspace does not appear in the Constraint objects in the workspace
table, click Refresh.
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Export Solver and Constraints — Solver and constraint export settings

dialog box

Change solver and constraint export settings, and export the solver and constraints to the MATLAB.
To access these parameters, on the Inverse Kinematics tab, select Export > Solver and
Constraints. When all settings and selections are complete, click Export to export the solver and
constraints to the workspace.

Parameter Description
Export solver Select to include the inverse kinematics solver

when exporting. Default is on.
Solver name Name of the inverse kinematics solver. Default is

ikSolver.
Export constraints Select to include the solver constraints when

exporting. Default is on.
Constraints cell array name Name of the solver constraints cell array,

specified as a string. Default is ikConstraints.

To enable this parameter, select the Export
constraints parameter.

Available constraints Table containing solver constraints, listing the
name, size, and class of each constraint. Select
constraints from this table and click Export to
export the constraints to the workspace.

To enable this parameter, select the Export
constraints parameter.

Export Waypoints — Export configurations as waypoints

dialog box

Export configurations as waypoints using the Export Waypoints dialog box. To access these
parameters, on the Inverse Kinematics tab, select Export > Configurations. When selections are
complete, click Export to export the waypoints as an M-by-N matrix of data type double to the
MATLAB workspace, where M is the number of waypoints, and N is the number of movable joints in
the robot.

Parameter Description
Waypoint matrix name Name of waypoint matrix. Default is

waypointData.
Available configurations Table containing available configurations, listing

the name, size, and class of each constraint.
Select configurations from this table and click
Export to export the configurations to the
workspace as waypoints.

Solution Report — Details of most recent inverse kinematics solution
dialog box
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View the details of the most recent inverse kinematics solution in the Solution Report dialog box. To
access these parameters, on the Inverse Kinematics tab, select Report Status.

These parameters are read-only.

Parameter Description
Iterations Number of iterations needed to achieve the

solution result.
Number of Random Restarts Number of times that the solution randomly

restarted. Random restarts are triggered when
the algorithm approaches a solution that does not
satisfy the constraints. The solver restarts with a
randomly generated initial guess.

Constraint Violations Constraint violations, indicated as a 1-by-N
structure array, where N is the number of
enabled constraints in the session. Select 1xN
struct array to print the details of each
constraint violation in the Command Window. See
“Constraint Violation Format” on page 5-32 for
more details.

Status Status of the solution, indicated as either
Success or Best available.

Success indicates that the solver successfully
reached a configuration that satisfies all
constraints.

Best available indicates that the solver did
not reach a configuration that satisfies all
constraints, and is showing the best available
configuration it could achieve.

Exit Flag Exit flag of the solver. See Exit Flags for more
information.

Programmatic Use
inverseKinematicsDesigner opens the Inverse Kinematics Designer app.

inverseKinematicsDesigner(sessionFileName) opens the Inverse Kinematics Designer
app and loads the specified inverse kinematics session MAT file that was previously saved from the
app.

More About
Resolving Constraint Conflict

Constraint conflicts occur when constraints cannot be met by the solver. They are indicated in the

Constraints Browser with a red symbol  next to the corresponding constraint. When the
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constraint is met during the most recent solution, the Constraints Browser indicates this with a

green symbol  next to the corresponding constraint. To solve these conflicts, troubleshoot your
constraints based on the last action you performed:

• If you moved the marker pose constraint, check if the pose you specified is within the bounds of
the robot. If it is not within the bounds, try moving it to somewhere within the bounds and see if
this resolves the conflict. If the constraint conflict does not resolve, the constraint may be in
conflict with joint limits or another constraint. In this case, consider modifying the parameters of
the marker pose constraint, such as the weights.

Note The solver assumes priority using the assigned weights of each constraint when attempting
to satisfy each constraint.

• If you added a constraint, verify if it is causing the conflict by clearing that constraint in the
Constraints Browser and clicking Refresh Solver. If all other constraints resolve, edit the
parameters of this constraint, or ensure that the existing unresolved constraints have the desired
parameter values, to resolve the conflict.

• If you modified a constraint, change the parameters of that constraint, if applicable, or edit the
parameters of other unresolved constraints. Consider modifying the solver weights of each
constraint, or disabling constraints to see if some constraint conflicts can be resolved
independently.

Constraint Violation Format

When you select the constraint violations structure array from the Solution Report dialog box, the
Inverse Kinematics Designer prints the type, violation magnitude, and name of each enabled
constraint in the Constraints Browser to the MATLAB Command Window. The structure contains
these fields for each constraint:

• Type — Type of constraint, represented as:

• 'pose' — Pose constraint.
• 'aiming' — Aiming constraint.
• 'joint' — Joint constraint.
• 'cartesian' — Cartesian constraint.

• Violation — Magnitude of the violation along each weighted part of the constraint during
optimization. A violation magnitude of 0 indicates no violation, and that the constraint has been
met. The format of the magnitude changes depending on the Type:

• 'pose' — Two-element row vector of the form [position orientation], where position is the
magnitude of the position violation in position, and orientation is the magnitude of the
orientation violation.

• 'aiming' — Scalar indicating the magnitude of the orientation violation.
• 'joint' — N-element row vector indicating the magnitude of the joint bound violation for

each of the N joints in the rigid body tree.
• 'cartesian' — Three-element row vector of the form [xBound yBound zBound], where

xBound indicates the magnitude of the violation x-bound, yBound indicates the magnitude of
the violation in the y-bound, and zBound indicates the magnitude of the violation in the z-
bound.
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Note Violation magnitudes may be close to 0 but still indicate success. For example, 1e-10
indicates almost no constraint violation.

• Name — Name of the constraint, as it appears in the Constraints Browser.

For example, a pose constraint named PoseConstraint, with violations in position and orientation,
is printed as:

***
Type: 'pose'
Violation: [0.2638 0.8253]
Name: "PoseConstraint"
***

Version History
Introduced in R2022a

See Also
Objects
analyticalInverseKinematics | generalizedInverseKinematics | inverseKinematics |
constraintAiming | constraintOrientationTarget | constraintCartesianBounds |
constraintJointBounds | constraintDistanceBounds | constraintPoseTarget |
constraintPositionTarget

Functions

Topics
“Plan Manipulator Path for Dispensing Task Using Inverse Kinematics Designer”
“Create Constrained Inverse Kinematics Solver Using Inverse Kinematics Designer”
“Inverse Kinematics Algorithms”
“Build Basic Rigid Body Tree Models”
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